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Introduction
• Outlying individuals (OutIDs) add to OFV but lie 

outside model prediction distribution (assessed via 
simeval in PsN [1])

• Influential individuals (InfIDs) can drive population 
parameter estimates (assessed via Case Deletion 
Diagnostics (CDD) in PsN [1])

• Both PsN methods are time & computer intensive
• Artificial Neural Networks (ANNs)

useful for complex inter-relationships 
need lots of (rich/balanced) data

• ANN = Quicker prediction than CDD and simeval
• Use multiple layers (connected via nodes)

• Aims: 1) Develop ANNs to predict InfIDs and OutIDs
2) Deploy into Pharmpy [2] 3) test on 8 drugs during 
automatic model development (AMD) models at 4 
stages

InfIDs TP TN

Predicted Positive 15 9

Predicted negative 11 2538

OutIDs TP TN

Predicted Positive 79 16

Predicted negative 21 1691

[1] Carter SJ et al. (in draft 2022): Assessment of Influential Individuals and Outliers in Pharmacometric Models Through the Use of Case Deletion Diagnostics (CDD) and 
Simulation Evaluations (simeval) Tools. 
[2] Nordgren R, et al. (2021) Pharmpy and assemblerr-Two novel tools to simplify the model building process in NONMEM (https://www.page-
meeting.org/default.asp?abstract=9656). 
[3] Hamdan A et al. (2022) Automatic development of pharmacokinetic structural models. (https://www.page-meeting.org/default.asp?abstract=10020)
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Methods
Database creation
• 13 predictors (see fig.1) from 27 NLME models 
• True positives (TP): OutID: ResiOFV > 3

InfID: dOFV > 3.84
Pre-processing
• Normalise predictors from -1 to 1
• Split data (90:10 train:test) using sklearn
• 10-fold cross-validation as sparse data
• TP distribution must be same across splits
• Done with modified stratified KFold split 

ANN
• Input (predictors), hidden (interactions) & output 

layers (prediction), learning rate = 7E-5 
• Developed in tensorflow (2.6) in Python (3.9.5) 

• Permutation importance: 
• Gives importance of predictor to output

• Final ANNs based on: sensitivity (TP rate), 
specificity (true negative (TN) rate) and precision
(true / total positives).

Deployment
• Final ANN models converted into tflite
• Tflite size (~1 MB) << tensorflow (~ 500 MB)
• Included in Pharmpy [2] (0.70.0 or later) for 

prediction of InfIDs and OutIDs
Testing
• 8 NLME model (2 oral, 6 i.v.) stages:
• Starting model (1 CMT, 1st order absorption and 

elimination), end of structural [3], IIV and RUV 
AMD workflows

Table 2: Final InfID ANN resultsTable 1: Final OutID ANN results

Conclusions
• ANNs successfully developed for both OutIDs and InfIDs
• Lower precision and sensitivity for InfIDs maybe due to too few TP than for OutIDs
• ANNs deployed successfully into Pharmpy via tflite.
• NB: ANN trained on published models, not on AMD

• Predicted OutIDs from Pharmpy  or  during AMD model development (Table 3)
• Predicted InfIDs from Pharmpy only seen with lopinavir (Table 3)
• Re-tested using CDD = false positives 

• More work required to improve use of ANNs for OutID and InfID
• Other predictors from models and datasets, more “true” values (TP and TN)

• True values: 6% OutID (100/1791) 
1% InfID (26/2573)

• Final ANN models:
• OutID: 4 hidden (128, 96, 64, 32 nodes)
• InfID: 4 hidden (128, 96, 64, 24 nodes)

• OutID: sensitivity: 79%, specificity: 99.1%, precision: 83.2%
• InfID: sensitivity: 57.8%, specificity: 99.6%, precision: 62.5%
• CWRESi and iOFV important for prediction of OutIDs and 

InfIDs (fig. 1 & 2)  

Figure 2: Permutation importance of the InfID ANN 
predictors*

Figure 1: Permutation importance of the OutID ANN 
predictors*

Drug Starting Structural IIV RUV

Daunorubicin 1 0 1 0 3 0 1 0

Desmopressin 2 0 3 0 1 0 1 0

Factor VIII 2 0 1 0 0 0 0 0

Gentamicin 16 0 12 0 17 0 16 0

Lopinavir 0 6 0 6 1 5 0 7

Pefloxacin 6 0 5 0 4 0 0 0

Tobramycin 8 0 9 0 6 0 6 0

Warfarin 3 0 5 0 0 0 0 0

Table 3: Prediction of number of OutIDs and InfIDs in Pharmpy for 
starting and final AMD stage models
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*Max and Median_CWRESi = maximum and median CWRES for individual i,  Max_EBEij_omega = maximum EBE i / variance for 
parameter, mean_ETC_omega = mean of standard errors of the EBE / variance for parameter. Counts: Observations = total 
observations in dataset, ind_observations = observations per subject, Parameters in model, Subjects, Covariate_relations
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