Age-Dependent Volume of Distribution of Pegylated Asparaginase (Oncaspar™) in children and adults

S. Borghorst1,2, N. Gökbuget3, A. Niemann1,2, C. Lanvers2 and G. Hempel1,2

1 Department of Pharmaceutical and Medical Chemistry – Clinical Pharmacy, University of Muenster, Germany
2 Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Germany
3 Department of Internal Medicine II, Goethe University Hospital, Haematology/Oncology, Germany

Introduction

Asparaginase (ASNase) is an essential component in most treatment protocols for acute lymphoblastic leukaemia (ALL) and non-Hodgkin’s lymphoma (NHL). Pegylated ASNase (PEG-ASNase, Oncaspar™) is an enzyme derived from Escherichia coli and conjugated to polyethylene glycol. This chemical derivatisation causes a reduced clearance of the enzyme, which has practical advantages compared to the native forms.

Objectives

A higher volume of distribution normalized to body surface area (V/BSA) was reported for PEG-ASNase in adults [1]. A Population pharmacokinetic (PopPK) analysis for PEG-ASNase in children also identified a trend towards higher V/BSA with increasing age [2]. Therefore, we analysed serum activities from both children and adults to get a better insight into possible age-dependent pharmacokinetics of PEG-ASNase.

Patients

We analysed 2086 serum activity measurements of 446 patients aged 0.8 to 80.6 years (median age 27.1) from the paediatric ALL/NHL-BFM 95 and ALL/NHL-BFM REZ protocol as well as the adult GAML 07/03 an GAML Elderly 1/2003 protocol (table 1). Adult patients received PEG-ASNase by protocol as first-line medication whereas the paediatric protocol used PEG-ASNase as second line medication in the case of a hypersensitivity reaction against the first line administered native E. coli ASNase (Asparaginase medac™) preparation.

Methods

The PopPK analysis was performed using NONMEM (version VI) with FOCE and INTERACTION option. Influence of age on V was assessed by fitting a PopPK model with time-dependent CI developed by Hempel et al [2] to the dataset of children and adults. CI was considered into the model according to the following formula: CI = \(\theta_1 \times \text{TAD} \), where TAD is the time after dose, \(\theta_1 \) is the typical initial CI and \(\text{TAD} \) is the factor for the exponential increase of CI with TAD. Age-dependent effect on V was modelled either as categorical or as continuous covariate.

Results

A one-compartment model with time-dependent clearance (CL) including BSA as covariate for CL and V described the data of children and adults sufficiently. Plotting the individual posthoc estimates of V normalized to BSA versus the patient’s age presented a difference in V/BSA between children and adults (figure 3).

![Figure 3](image_url)

Age-dependency of V was best described with a categorical covariate for patients < 18 years. Inclusion of age was associated with a remarkable reduction in OFV (∆ 326) and also decreased interindividual variability (IVIV) as well as unexplained residual variability. Goodness of Fit (GOF) plots are shown in figure 4, final model parameter estimates are given in table 2.

![Figure 4](image_url)

Based on the final model 1000 datasets of a typical adult and paediatric patient dosed according to the current adult (GAML 07/2003) and paediatric ALL treatment protocols (AIIEP BFM 2009) were simulated. Age-dependent V translated into higher peak activities for the paediatric population (figure 5).

![Figure 5](image_url)

Conclusion

Analysing data of children and adults presented an age-dependency in V for PEG-ASNase. Children and adolescents younger than 18 years of age exhibit a lower volume of distribution normalized to BSA when compared to adults (1.05 vs 2.94 l/m²). The influence of age on dosing and schedule of PEG-ASNase will be analysed in future studies.

References

Contact: Stephan Borghorst, University of Muenster, Department of Pharmaceutical and Medical Chemistry – Clinical Pharmacy, Hittorffstraße 58-62, 48149 Muenster, Germany
siborg.01@uni-muenster.de

Table 1: Patients demographics

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Population estimate</th>
<th>RSE (%)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>1.17 m³/m²</td>
<td>5.5</td>
<td>19.9</td>
</tr>
<tr>
<td>CI</td>
<td>6.95 m³/m²</td>
<td>7.2</td>
<td>10.5</td>
</tr>
<tr>
<td>Influence TAD on CI</td>
<td>4.54</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>Intravenous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ad. adults</td>
<td>10.0 [8]</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>prop. adults</td>
<td>0.338 [6.7]</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>ad. children</td>
<td>2.05 [12.2]</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>prop. children</td>
<td>0.384 [6.2]</td>
<td>6.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Plot of the raw data (threshold 100 mL · d⁻¹).

Figure 3: Age of the patients versus the volume of distribution per m².

Figure 4: GOF Plots for the final model.

Figure 5: Simulated ASNase activity for a typical paediatric (BSA: 0.88 m², AMT: 2.500 l/m²) and a typical adult patient (BSA: 1.9 m², AMT: 2.000 l/m²).