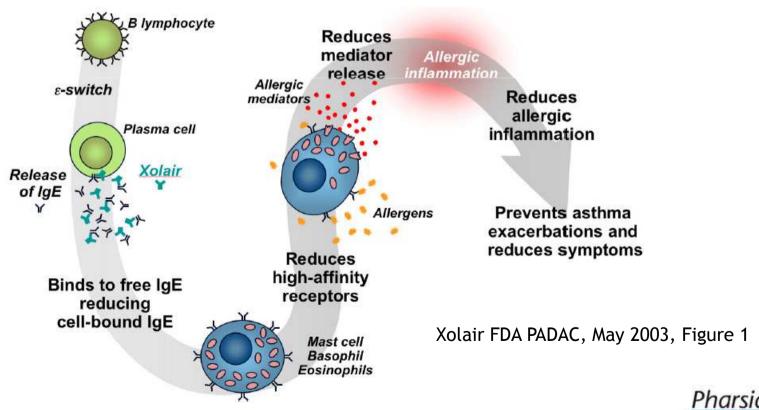


Mechanistic Models to Simulate Dose Response of IgE Suppression Following Dosing of Anti-IgE Monoclonal Antibodies

Pascal Chanu¹, Balaji Agoram², René Bruno¹
(1) Pharsight, a CertaraTM company; (2) Pfizer, Clinical Pharmacology
PAGE - June 9, 2010 - Berlin



Omalizumab (Xolair TM) is a recombinant humanized anti-IgE antibody

Omalizumab inhibits the activity of IgE

Omalizumab is approved in the treatment of moderate to severe persistent asthma for adults and adolescents (≥12 y)

Omalizumab Mechanism of Action

Key questions and objective

Key questions

- Is there a potential to develop a new anti-IgE antibody with enhanced affinity to treat the Omalizumab non-treatable population?
- What is the minimum effective dose in the most "difficult to treat" portion of the population?

Objective: Simulate dose response of IgE suppression for anti-IgE monoclonal antibodies such as Omalizumab versus higher affinity antibodies

Available information: existing models

Two published instantaneous equilibrium drug-IgE binding models for Omalizumab: Hayashi et al., Br J Clin Pharmacol, 2007 and Lowe et al., Br J Clin Pharmacol, 2009

$$C = \left(\frac{K_d V_X V_E}{V_C} + X_T + E_T\right) - \sqrt{\left(\frac{K_d V_X V_E}{V_C} + X_T + E_T\right)^2 - 4X_T E_T} / 2$$

where

$$X = X_T - C$$

$$E = E_T - C$$

$$K_d = K_{d0} \left(\frac{X_T}{F_T}\right)^{\alpha}$$

and
$$S$$
 is the subcutaneous site; X_T and E_T are molar masses of total omalizumab and IgE; X and E are free omalizumab and IgE; k_a is the absorption rate constant; R is the rate of production (or expression) of IgE; CL_n and V_n are the clearances and volumes of free omalizumab, free IgE and the complex; K_d is the equilibrium binding constant, and α is the change in the affinity of binding between omalizumab and IgE as a function of the molar ratio of total omali-

$$\frac{dS}{dt} = -k_a S$$

$$\frac{dX_T}{dt} = k_a S - \frac{CL_X \cdot X}{V_X} - \frac{CL_C \cdot C}{V_C}$$

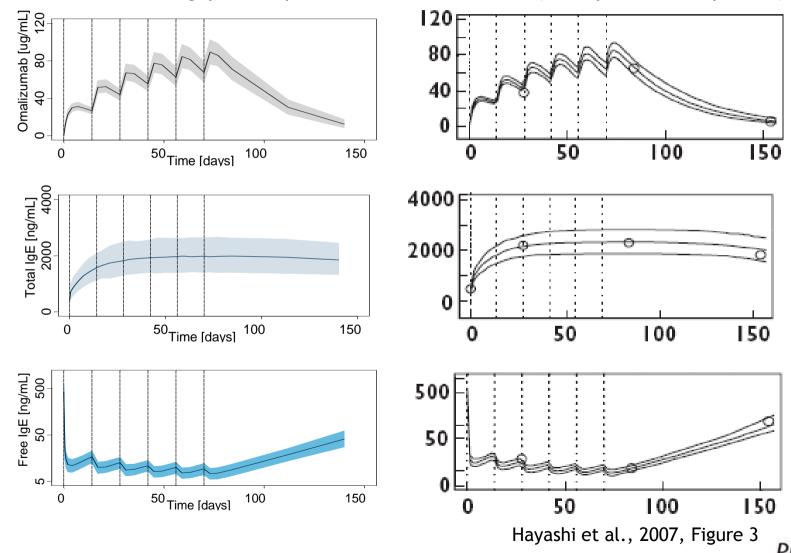
$$dE_T = CL_E \cdot E = CL_C \cdot C$$

$$\frac{dE_T}{dt} = R - \frac{CL_E \cdot E}{V_E} - \frac{CL_C \cdot C}{V_C}$$

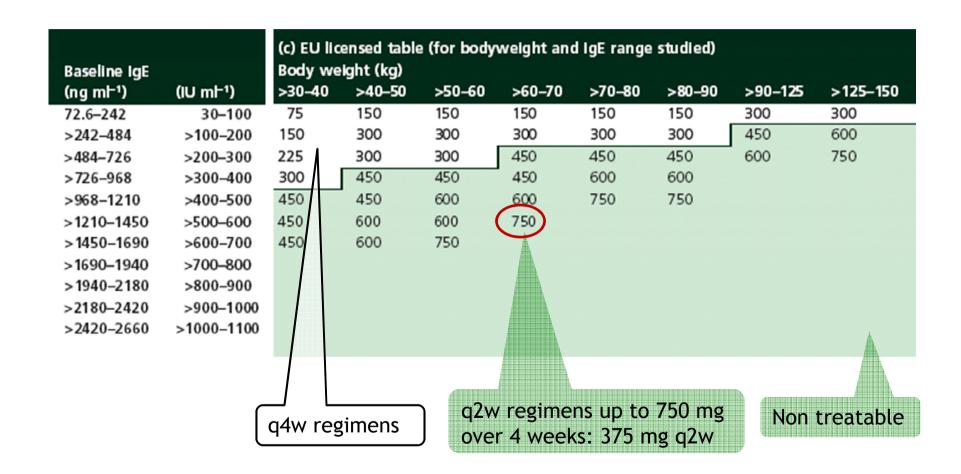
Lowe et al., 2009

zumab to total IgE.

Available information: clinical information


Clinical data on another 2nd generation anti-IgE monoclonal antibody HAE1 showed that with an enhanced affinity, the expected fold reduction in dose is limited to roughly 2-fold (Putnam et al., AAPS J, 2008)

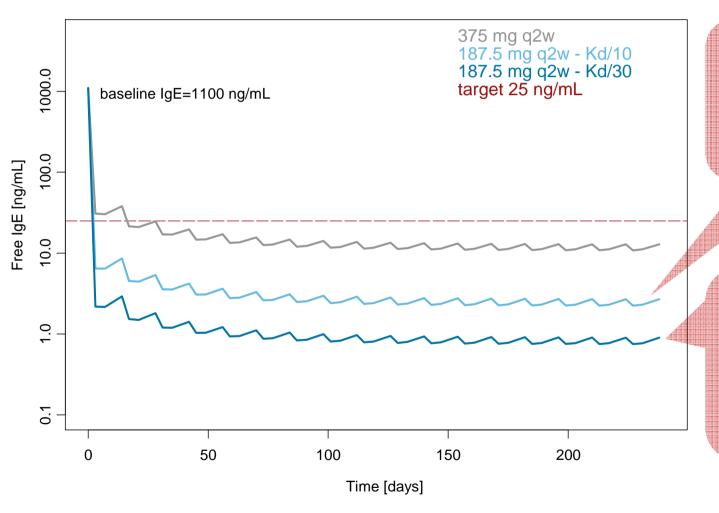
The dosing rationale for Omalizumab is based on a target average free IgE level of 25 ng/mL which should ensure that 95% of patients achieve free IgE level <50 ng/mL (Xolair FDA PADAC, May 2003)


Published models have been successfully implemented

Omalizumab 225 mg q2w: 95% prediction interval of median (18 subjects, 1000 replicates)

A Certara™ Company

Model based simulations according to the EU licensed table (Lowe et al.)


Model based simulations based on Lowe et al. tend to confirm the EU licensed table and the Omalizumab dosing rationale

EU Table: percentage of patients achieving target free IgE<50 ng/mL based on a pre dose steady state free IgE level (week 29)										
	Body weight									
Baseline IgE (ng/mL)	>30-40	>40-50	>50-60	>60-70	>70-80	>80-90	>90-125	>125-150		
72.6-242	q4w				93.5		98.2			
>242-484	94.3									
>484-726			93.4	98.5				97.9		
>726-968			97.9	96.3						
>968-1210	q2w					97.7				
>1210-1450					97.1	95.6				
>1450-1690		97.8						83.5		
>1690-1940			97.5			7				
>1940-2180				94.6	92.3		84.5			
>2180-2420		97.8				88.2				
>2420-2660					89.0			67.1		

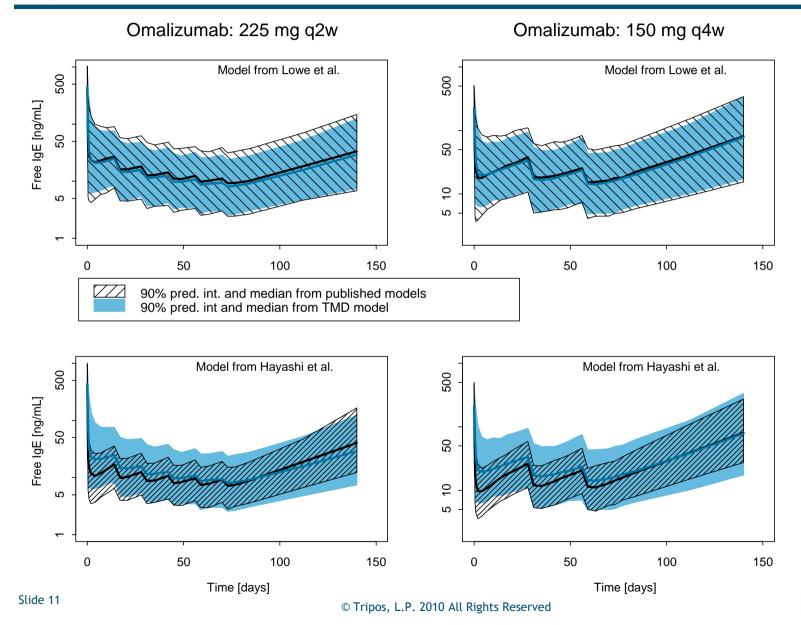
According to this rationale and based on the model from Lowe et al., the treatable population with Omalizumab 375 mg q2w could be a little bit expanded to higher baseline IgE values and higher body weights than those mentioned in the EU-licensed table (Lowe et al.)

However deterministic simulations with the instantaneous equilibrium models (Lowe et al.) denoted the need for a physiological model for PK-PD translation across anti-IgE antibodies with various affinities

A much more than 2-fold reduction in dose expected with a 10-fold enhanced affinity

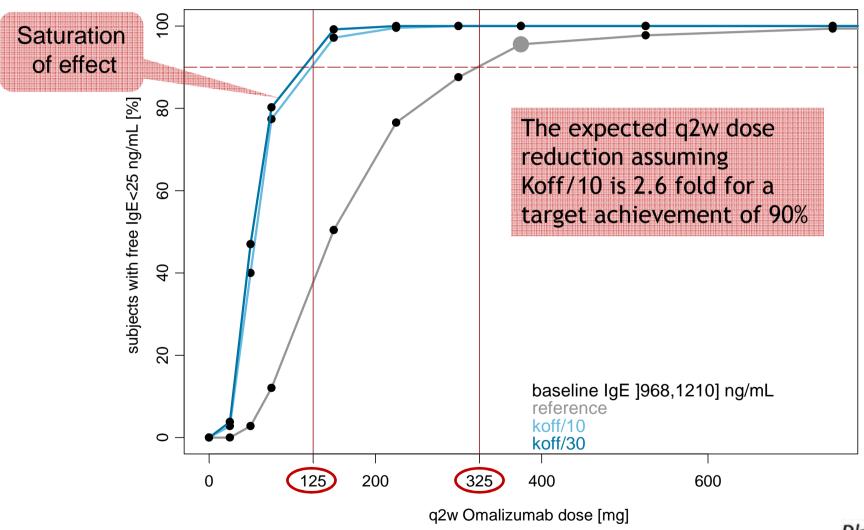
No apparent saturation on free IgE suppression expected with a further enhanced affinity

Switch to a Target Mediated Disposition model


The Target Mediated Disposition model (Agoram et al. Br. J. Clin. Pharmacol, 2009) was implemented and extended as follows:

```
Units: nmol. L. d
  X: free Omalizumab amount
  Conc<sub>E</sub> and Conc<sub>C</sub>: free IgE and complex conc.
\frac{dS}{dT} = -ka.S
\frac{dX}{dT} = ka.S - Kon.X.Conc<sub>E</sub> - \frac{CLx}{Vx}.X + Koff.Vx.Conc<sub>C</sub>
\frac{dConc_{E}}{dT} = -Kon. \frac{X}{Vx}Conc_{E} - \frac{CLe}{Ve}.Conc_{E} + \frac{R}{Ve} + Koff.Conc_{C}
\frac{dConc_{c}}{dT} = Kon. \frac{X}{Vx} Conc_{E} - \frac{CLc}{Vc}. Conc_{C} - Koff. Conc_{C}
S(0) = 0
X(0) = 0
Conc_{E}(0) = IgE_{baseline}
Conc_{c}(0) = 0
Koff = \frac{CLc}{Vc}.4
Kon = \frac{Koff}{Kd_0} \cdot \left( \frac{Conc_E \cdot Ve + Conc_C \cdot Vc}{X + Conc_C \cdot Vc} \right)^{\alpha}
```

- Parameterization in terms of Koff and Kon instead of Kd (Kd=Koff/Kon)
- Molar ratio (total Omalizumab/total IgE) implemented on Kon
- Parameter estimates, baseline IgE, correlations, covariates relationships from Lowe et al.
 - Estimated model parameters: CLx, CLc, Cle, Vx=Ve, Vc, R, ka, Kd₀, α



Simulations performed at usual Omalizumab dosing regimens with the TMD model are consistent with those from published instantaneous equilibrium models

A Certara™ Company

Based on the TMD model, a 10-fold reduction in Koff is expected to result in a 2 to 3-fold dose reduction

Conclusions

Model based simulations using the model from Lowe et al. confirm the EU licensed table and the Omalizumab dosing rationale

A fully mechanistic TMD model is required for PK-PD translation across anti-IgE antibodies of different affinities

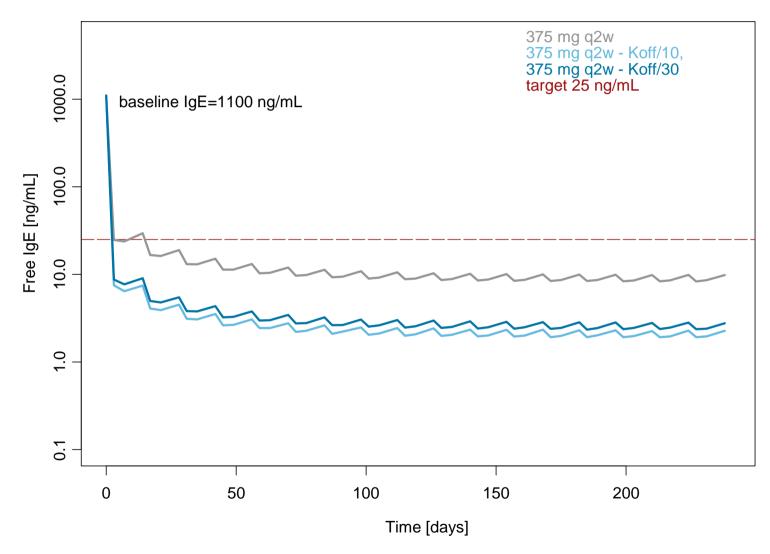
The TMD model seems to provide reliable results:

- In line with both published instantaneous equilibrium models
- In line with clinical data on a 2nd generation anti-IgE monoclonal antibody (Putnam et al.)

Assuming Koff/10, a dose of 225 mg q2w is expected to ensure a free IgE level <50 ng/mL in more than 95% of patients within the most "difficult to treat" portion of the population (highest body weight and baseline IgE values)

There is potential to treat a larger patient population with a higher potency anti-IgE antibody and a more convenient dosing paradigm

Back-up slides



Model based simulations based on Lowe et al. tend to confirm the EU licensed table and the Omalizumab dosing rationale

EU Table: mean pre dose steady state free IgE level (week 29)											
Body weight											
Baseline IgE (ng/mL)	>30-40	>40-50	>50-60	>60-70	>70-80	>80-90	>90-125	>125-150			
72.6-242	q4w				22		14.9				
>242-484	21.3										
>484-726			22.4	14.7				16.1			
>726-968			16.5	18.8							
>968-1210	q2w					16.8					
>1210-1450					17.5	19.8					
>1450-1690		16.5						32.4			
>1690-1940			17.2								
>1940-2180				21.4	23.9		31.9				
>2180-2420		17.1				28.7					
>2420-2660					27.3			45.7			

For increased affinity the TMD model shows results consistent with the clinical data (Putnam et al.)

