UNIVERSITET

Handling Underlying Discrete Variables with Mixed Hidden Markov Models in NONMEM

Elodie L. Plan ${ }^{1}$, Joakim Nyberg ${ }^{1}$, Robert J. Bauer², Mats O. Karlsson¹

${ }_{1}^{1}$ Pharmacometrics Research Group, Dept of Pharmaceutical Biosciences, Uppsala University, Sweden; ${ }^{2}$ Pharmacometrics, R\&D, ICON Development Solutions, MD, USA

Objectives

- Unobserved phenomena/covariates are commonly not included in models, though many may be of great importance \rightarrow ignoring may cause bias in estimates, e.g., masking effect of rescue medication in pain trials.
Latent variable models have attractive properties, several types have recently been presented*, .e.g., mixed hidden Markov models (MHMM) \rightarrow studying their properties further is of interest.
The aims of this work were to explore various MHMM implementations in NONMEM and to expand the investigation of the benefits of this methodology.

Methods

Implementation:

- Sets of 100 stochastic simulations and estimations (SSE) in NONMEM 7.3.
- Simulations involved randomly attributing stationary distributions (δ) and subsequently applying transitions (π) according to a Markov model.
Estimations used the Forward algorithm, summing over all the probabilities of each state at each position. Post-hoc subroutine used the Viterbi algorithm, in order to evaluate the most likely hidden states chain.

Model and data I:

- Simulation model components: 2 hidden states, e.g., concomitant infection absent or present, and 2 "open" Poisson distributions, e.g., CD4 counts. Drug effect (DE): disease modifying as additive on mean count (λ) slope (TE).
- Study design: 60 individuals, e.g., HIV+ patients, randomized to placebo or treatment and followed over 60 time points, e.g., monthly during 5 years.

$$
\begin{array}{r}
\pi_{12_{i}}=1 /\left(1+e^{-\left(\operatorname{Logit}\left(\pi_{12}\right)+\eta_{12}+T E_{\pi_{i}} t_{i}\right)}\right) \\
\pi_{21_{i}}=1 /\left(1+e^{-\left(\operatorname{Logit}\left(\pi_{21}\right)+\eta_{21}\right)}\right)
\end{array}
$$

$$
\lambda_{1_{i}}=\theta_{1} \cdot e^{\eta_{i}}-\left(T E_{\lambda_{i}}-D E\right) \cdot t_{i}
$$

$$
\lambda_{2_{i}}=\lambda_{1}-\theta_{2} \cdot e^{\eta_{2}}
$$

Figure 1: Schematic representation of a MHMM structure and the start of a time series, with equations of Model I.

Investigation of estimation methods:

- Estimation of data I using Laplace (method=1 LAPLACE -2LL Print=1 MAXEVAL=9999 nohabort nointer numerical slow optmap=1 etader=3), Importance Sampling (METHOD=IMP LAPLACE -2LL PRINT=1 NITER=30 NOINTER NOHABORT SIGL=8 RANMETHOD=P MAPITER=0) and SAEM (method=SAem LAPLACE -2LL nburn=300 niter=300 CTYPe=3 PRINT=10 NOINTER NOHABORT SIGL=8 RANMETHOD=P).

Exploration of benefits:

- Estimation (SAEM) of data I with simulation model (MHMM) and non-Markovian model (NMM) consisting in 1 Poisson distribution (with time and drug effect on λ).

Model and data II:

- Simulation model components: 2 hidden states, e.g., exacerbation absent or present, and 2×2 "open" continuous variables, e.g., FEV1 and PRO. Drug effect: on hidden transition as affects π_{12}, i.e., decreases probability of exacerbation.
Study design: 30 individuals, e.g., COPD patients, randomized to placebo or treatment and followed over 60 time points, e.g., weekly during 15 months.

Figure 2: Schematic representation of a MV-MHMM linked to two types of observations, with equations of Model II.

Exploration of extension:

- Estimation (SAEM) of data II with multivariate simulation model (MV-MHMM), MHMM (1 variable) and non-Markovian model (NMM) as continuous (V1).

Reference

Conclusions

- MHMM can be implemented in NONMEM for systems involving 2 or more hidden states, discrete or continuous "open" observations and 1 or multiple variables.
EM-methods, when applied to MHMMs, seem to be equally or more precise and accurate for fixed -not random- effects as well as faster than Laplace.
In the 2 examples, MHMMs led to higher power to detect a drug effect, which was estimated closer to its true value compared to non-Markovian model (NMM). MHMMs offer possibilities of better understanding and modeling underlying data in numerous applications.

Results

Figure 3: Mean relative RMSE for the drug effect (DE), the random effects (ω^{2}) and the fixed effects (θ) in Model I obtained with the three estimation methods investigated, as well as their associated mean runtimes.
 Figure 4: Two individual profiles of observations (dots) simulated with Model I during hidden state 1 (grey) or
(red) represented together with the mean counts () predicted with MHMM (grey and red) or NMM (black).

Figure 5: Power to detect the drug effect ($\triangle \mathrm{OFV}>X^{2}(0.95)$) in data I with Model I (MHMM) and $N M M$ and associated estimated values with the two models, when the true drug effect was 0.5 (horizontal line).

Figure 6: Two sets of individual profiles corresponding to two variables (forced expiratory volume in 1s and patient reported outcome) simulated with Model II as linked to hidden state 1 or 2 (red).

 MHMM linked to 1 variable and a NMM for 1 variable when detecting drug effect, with associated power.

