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Objectives

 Unobserved phenomena/covariates are commonly not included in models,
though many may be of great importance =» ignoring may cause bias in
estimates, e.g., masking effect of rescue medication in pain trials.

 Latent variable models have attractive properties, several types have recently
been presented’, .e.g., mixed hidden Markov models (MHMM) = studying their
properties further is of interest.

« The aims of this work were to explore various MHMM implementations in
NONMEM and to expand the investigation of the benefits of this methodology.

Methods

Implementation:
» Sets of 100 stochastic simulations and estimations (SSE) in NONMEM 7.3.

« Simulations involved randomly attributing stationary distributions (0) and
subsequently applying transitions (1) according to a Markov model.

« Estimations used the Forward algorithm, summing over all the probabilities of each
state at each position. Post-hoc subroutine used the Viterbi algorithm, in order to
evaluate the most likely hidden states chain.

Model and data I:

« Simulation model components: 2 hidden states, e.g., concomitant infection absent
or present, and 2 “open” Poisson distributions, e.g., CD4 counts. Drug effect (DE):
disease modifying as additive on mean count (A) slope (TE).

« Study design: 60 individuals, e.g., HIV+ patients, randomized to placebo or
treatment and followed over 60 time points, e.g., monthly during 5 years.
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Figure 1: Schematic representation of a MHMM structure and the start of a time series, with equations of Model |.

Investigation of estimation methods:

« Estimation of data | using Laplace (METHOD=1 LAPLACE -2LL PRINT=1 MAXEVAL=9999
NOHABORT NOINTER NUMERICAL SLOW OPTMAP=1 ETADER=3), Importance Sampling
(METHOD=IMP LAPLACE -2LL PRINT=1 NITER=30 NOINTER NOHABORT SIGL=8 RANMETHOD=P
MAPITER=0) and SAEM (METHOD=SAEM ILAPLACE -2LI NBURN=300 NITER=300 CTYPE=3
PRINT=10 NOINTER NOHABORT SIGL=8 RANMETHOD=P).

Exploration of benefits:

« Estimation (SAEM) of data | with simulation model (MHMM) and non-Markovian
model (NMM) consisting in 1 Poisson distribution (with time and drug effect on A).

Model and data ll:

« Simulation model components: 2 hidden states, e.g., exacerbation absent or
present, and 2x2 “open” continuous variables, e.g., FEV1 and PRO. Drug effect:
on hidden transition as affects 1,5, i.e., decreases probability of exacerbation.

« Study design: 30 individuals, e.g., COPD patients, randomized to placebo or
treatment and followed over 60 time points, e.g., weekly during 15 months.
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Figure 2: Schematic representation of a MV-MHMM linked to two types of observations, with equations of Model Il.

Exploration of extension:

« Estimation (SAEM) of data |l with multivariate simulation model (MV-MHMM),
MHMM (1 variable) and non-Markovian model (NMM) as continuous (V1).

Reference

" Delattre M, et al. Analysis of Exposure—response of Cl-945 in Patients with Epilepsy: Application
of Novel Mixed Hidden Markov Modeling Methodology. JPKPD (2012)

Conclusions

MHMM can be implemented in NONMEM for systems involving 2 or more hidden
states, discrete or continuous “open” observations and 1 or multiple variables.

EM-methods, when applied to MHMMs, seem to be equally or more precise and
accurate for fixed —not random- effects as well as faster than Laplace.

In the 2 examples, MHMMSs led to higher power to detect a drug effect, which
was estimated closer to its true value compared to non-Markovian model (NMM).

MHMMs offer possibilities of better understanding and modeling underlying data
iIn numerous applications.

Results
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Figure 3: Mean relative RMSE for the drug effect (DE), the random effects (w?) and the fixed effects (6) in
Model | obtained with the three estimation methods investigated, as well as their associated mean runtimes.
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Figure 4: Two individual profiles of observations (dots) simulated with Model | during hidden state 1 (grey) or 2

(red) represented together with the mean counts (A) predicted with MHMM (grey and red) or NMM (black).
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Figure 5: Power to detect the drug effect (AOFV>X?(0.95)) in data | with Model | (MHMM) and NMM and
associated estimated values with the two models, when the true drug effect was 0.5 (horizontal line).
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Figure 6: Two sets of individual profiles corresponding to two variables (forced expiratory volume in 1s and

patient reported outcome) simulated with Model Il as linked to hidden state 1 or 2 (red).
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Figure 7: AOFV between full and reduced structures of estimation of data Il with Model Il (MV-MHMM), a
MHMM linked to 1 variable and a NMM for 1 variable when detecting drug effect, with associated power.
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