A cohesive model framework of receptor pharmacology: beyond the E_{max} model

<u>Xiao Zhu¹</u>, David Finlay², Michelle Glass², Stephen Duffull¹

¹ School of Pharmacy, University of Otago, Dunedin, New Zealand ² Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand

A familiar equation

$$y = \frac{a \cdot x}{b + x}$$
 Contains zero pharmacology

- Part of a large function class: rectangular hyperbolic function
- Curve features: monotonic and asymptotic
- This type of equation (and its variants) nearly always work to describe pharmacological data
- Interpretation of parameters may not be in accordance with underlying mechanisms
- Extrapolation to other settings is challenging and can possibly be wrong

Derivation of the E_{max} model

$$E = \alpha \cdot \varepsilon \cdot R_T \cdot \frac{C}{C + K_D} = E_{max} \cdot \frac{C}{C + C_{50}}$$

- Hill was the first to derive the E_{max} model and provide its biological interpretation
- Two independent parts: effect and binding
 - E_{max} (maximal effect): efficacy
 - α : scaling factor that converts receptor unit into effect unit
 - ε : intrinsic efficacy
 - R_T : total receptor
 - C_{50} (drug concentration at half maximal effect): potency
 - *K_D*: equilibrium dissociation constant

Archibald Vivian Hill

Hill, A. V. J Physiol. 1909; 39(5): 361-373

The E_{max} model is used ubiquitously

- The most widely used drug effect model in PD modelling
 - Effect compartment model
 - Indirect response model
 - Various kinds of mechanistic PD models
- Describe drug-receptor interactions (normally) at the level of a bioassay response
- So ingrained that assumptions attached to it are often overlooked

Aims

- To identify the assumptions underpinning the E_{max} model
- To relax these assumptions to accommodate different experimental conditions and physiological behaviours of systems

Eight fundamental assumptions of the E_{max} model

Two assumptions I will talk about today

Linear signalling assumption(A.1) may not hold

• Violation of linear signalling assumption (A.1)

• Maximal response with only a fraction of the receptor occupied

Gifford et al. J Pharmacol Exp Ther, 1999, 288(2): 478-483

Operational model: relaxation of A.1

Black & Leff (1983) introduced an idea of "Transducer Function": *E=f(CR)*, and suggested *f(CR)* = *E_{max} model* (*i.e.*, **Operational Model**).

A.1 $E \propto CR$ Linear signalling

A.1′

 $E \propto \frac{CR}{CR + K_E}$

Nonlinear signalling

Black JW, Leff P. Proc R Soc Lond B Biol Sci. 1983;220(1219):141-62

Operational model: E_{max} within an E_{max}

• Now we have two E_{max} models:

$$CR = R_T \cdot \frac{C}{C + K_D}$$
 $E = E_m \cdot \frac{CR}{CR + K_E}$
 E_m : system maximal effect

• Operational model:

$$E = \frac{E_m \cdot \frac{R_T}{K_E} \cdot C}{C \cdot \left(\frac{R_T}{K_E} + 1\right) + K_D} = \frac{E_m \cdot \tau \cdot C}{C \cdot (\tau + 1) + K_D}$$

Operational model vs. the E_{max} model

• The operational model can be re-parameterised into the E_{max} model, but will have different interpretation

$$E = \frac{E_m \cdot \tau \cdot C}{C \cdot (\tau + 1) + K_D} = \frac{E_m \cdot \tau}{\tau + 1} \cdot \frac{C}{C + \frac{K_D}{\tau + 1}} = E_{max} \cdot \frac{C}{C + C_{50}}$$

• E_{max} and C_{50} are always correlated

$$E_{max} = \frac{E_m \cdot \tau}{\tau + 1} \qquad \qquad C_{50} = \frac{K_D}{\tau + 1}$$

 E_m : system parameter K_D : ligand parameter τ : system/ligand parameter

• E_{max} and C_{50} depend on both the system and the ligand

Operational model: cascade amplification

- The observed effect reaches the maximum much faster than receptor occupancy
- The maximum is now slightly lower after signal transduction

• Violation of binary complex assumption (A.2)

• An external protein (*e.g.,* G protein) could affect the affinity of agonists and the sensitivity of the system.

• Violation of binary complex assumption (A.2)

• An external protein (*e.g.,* G protein) could affect the affinity of agonists and the sensitivity of the system.

• Violation of binary complex assumption (A.2)

• An external protein (*e.g.,* G protein) could affect the affinity of agonists and the sensitivity of the system.

• Violation of binary complex assumption (A.2)

• An external protein (*e.g.,* G protein) could affect the affinity of agonists and the sensitivity of the system.

Ternary complex model: relaxation of A.2

• DeLean and colleagues first extended the E_{max} model to describe such systems by explicitly allowing the co-binding and allosteric interaction with a third component on GPCRs (*i.e.*, ternary complex model)

De Lean et al. J Biol Chem. 1980;255:7108-7117

Ternary complex model

• A possible mechanistic interpretation of the operational model

$$E = \alpha \cdot CRG = \frac{E_m \cdot \tau \cdot C}{C \cdot (\tau + 1) + K_D}$$

• When G protein is much less than receptor:

$$E_m = \alpha \cdot G_T \qquad \qquad \tau = \frac{R_T}{K_G}$$

• When G protein is much more than receptor:

$$E_m = \alpha \cdot R_T \qquad \qquad \tau = \frac{G_T}{K_G}$$

Ternary complex model vs. the E_{max} model

• Can be re-parameterised into E_{max} model

$$E_{max} = \frac{E_m \cdot \tau}{\tau + 1} \qquad C_{50} = \frac{K_D}{\tau + 1}$$

- The dependences of the curve change with the ratio of G protein to receptor
- When G protein is much less than receptor:
 - G protein only affects E_{max}
- When G protein is much more than receptor:
 - G protein affects both E_{max} and C_{50}

A cohesive model framework: relaxation of A.1-7

• Relax A.1-A.7: nonlinear signalling + allosteric modulation + constitutive activity + functional selectivity + receptor kinetics + binding kinetics + pharmacokinetics

Operational model always works

• Under equilibrium conditions, the operational model can describe the effect in each pathway, but the mechanism is lost

Inferences

- We never actually fit the E_{max} model we always fit the **Operational Model**
- All E_{max} models used are re-parameterisations of the **Operational Model**
- E_{max} and C_{50} are always naturally correlated
- The classic concepts of 'full agonism' and 'partial agonism' become blurred because E_{max} depends on both the system and the ligand

Acknowledgements

- University of Otago Doctoral Scholarship
- School of Pharmacy, University of Otago
- Otago Pharmacometrics Group

