Evaluation of designs for biosimilarity crossover trials analysed by nonlinear mixed effects models

Anne Dubois⁽¹⁾, Thu Thuy Nguyen⁽¹⁾, Philip Lowe⁽²⁾ and France Mentré⁽¹⁾

⁽¹⁾INSERM UMR 738, University Paris Diderot, Paris, France; ⁽²⁾Novartis Pharma AG, Basel, Switzerland

Context

- Similarity of different formulations of a biologic drug
- ⇒ Pharmacokinetic (PK) bioequivalence crossover trials
 - ▼ Standard non compartmental analysis (NCA)^[1,2]: at least 10 samples per subject ▼ Nonlinear mixed effects models (NLMEM)^[3,4]: fewer samples per subject
- Importance of choice of design in NLMEM
 - A Balance between number of subjects and number of samples per subject \diamond Choice of sampling times
 - \diamond Impact on study results (precision of parameter estimates, power of tests)
- Design evaluation and optimisation

Inserm

- Using the population Fisher information matrix
- Extension to take account of within subject variability and discrete covariates changing between periods^[5]
- \diamond Implementation of these developments in PFIM $3.2^{[6]}$

Objective: to evaluate and apply the extension of the population Fisher information matrix for designing biosimilar crossover trials

Methods

- NLMEM statistical model
 - \diamond Between (BSV, ω) and within subject (WSV, γ) variability
 - \diamond Treatment (β_T), period (β_P), and sequence (β_S) effects
- Bioequivalence Wald test
 - ↔ H₀: { β_T ≤ log(0.8) or β_T ≥ log(1.25) }
 - × Rejection of H₀: CI_{90%}($β_T$) ∈ [log(0.8); log(1.25)]
- Simulation study

 \diamond 1000 simulated crossover trials with 2 or 4 periods and 2 sequences

- One-compartment model (parameters k_a, CL/F, V/F) Designs with 40 subjects and n samples per subject and period
- ¤ Asymptotic (A): n=10 and sparse (S): n=3
- Treatment effect on CL/F and V/F: $\beta_{T,CL/F} = \beta_{T,V/F} = \log(0.8)$ \Rightarrow Due to the PK model: $\beta_{T,AUC} = \beta_{T,Cmax} = \log(0.8)$
- Two levels of variability for random effects (residual error=10%) $\tt \tt I$ S1: BSV=10% for V/F and 20% for k_a and CL/F, WSV=BSV/2 ${}^{\amalg}\mathrm{S_{h}:}$ BSV=50%, WSV=15%
- Estimation using MONOLIX 2.4^[7] for all simulated trials of each design
- NLMEM parameters estimated by SAEM algorithm^[8] and their standard error (SE_{est})
- ★ Computation of $\beta_{T,Cmax}$ and $SE_{est}(\beta_{T,Cmax})$ by delta method^[9]
- Empirical SE (SE_{emp}) : standard deviation of the 1000 parameter estimates
- ♦ Prediction of the SE using PFIM 3.2 (SE_{nred}) for each design
- ▼ Computation of $SE_{pred}(\beta_{T,Cmax})$ by delta method
- \Rightarrow Comparison of SE_{pred} to the distribution of SE_{est} and to SE_{emp}
- \diamond Predicted power of bioequivalence test under different H₁
- ★ Assuming $\exp(\beta_{T,CL/F}) = \exp(\beta_{T,V/F}) = \delta_1 \implies \exp(\beta_{T,AUC}) = \exp(\beta_{T,Cmax}) = \delta_1$ with $\delta_1 = 0.85$, 0.9, 0.95, 1, 1.05, 1.10 or 1.15

Results

Evaluation of SE_{pred}

- $\Rightarrow \operatorname{SE}_{\text{pred}} \text{ of } \beta_{\text{T,Cmax}} \text{ also close to corresponding } \operatorname{SE}_{\text{emp}}$

Predicted power using PFIM 3.2

- Similar results for asymptotic and sparse designs for $\delta_1 \! \in \! [0.95; \, 1.1]$
- \diamond Lower power for δ_1 =0.85 or 1.15 for S_h compared to S₁

Application

- + Crossover trial comparing two formulations of a biologic drug in development at Novartis Pharma AG
- 16 monkeys with 12 sampling times per period
- Parameter estimation by NCA
 - Concentrations below the limit of quantification (LOQ) deleted \diamond Non zero residual concentration from first period at drug administration of second period considered as null
- NLMEM analysis using MONOLIX 3.1^[7]
- ♦ One-compartment model
- Take acccount of residual concentrations of first period and LOQ
- $\diamond~\beta_{T},~\beta_{P}~and~\beta_{S}$ + BSV + WSV on all PK parameters

Individual PK profiles for both formulations obtained from the crossover trial on monkeys

from the crossocer triat on monkeys							
	λ_{R}	β_{T}	BSV	wsv			
k _a	2.7	-0.35	0.44	0.78			
	(1.0)	(0.31)	(0.15)	(0.15)			
V/F	5.8 10 ⁻²	-0.12	0.19	0.16			
	(0.6 10 ⁻²)	(0.08)	(0.06)	(0.05)			
CL/F	6.63 10 ⁻³	-0.07	0.17	0.15			
	(0.6 10 ⁻³)	(0.07)	(0.05)	(0.04)			
	0.30						

NLMEM parameters estimated by MONOLIX 3.1 using data

- Bioequivalence analysis by NCA and NLMEM
- \diamond NCA: $\beta_{T,AUC}$ and $\beta_{T,Cmax}$ estimated by linear mixed effects model on the logtransformed parameters (AUC or C_{max})
- \diamond NLMEM: $\beta_{T,AUC}$ = $\beta_{T,CL/F}$ and $\beta_{T,Cmax}$ and its SE estimated by delta method Bioequivalence analysis using NLMEM and NCA on data

from the crossover trial on monkeys					ikeys	
		AUC		C _{max}		AUC and C bissessinglent by NIMEM
		$exp(\beta_T)$	CI _{90%}	$exp(\beta_T)$	CI _{90%}	\sim AUC and C_{max} bloequivalent by NLMEM
	NLMEM	1.07	[0.96; 1.20]	1.07	[0.94; 1.22]	♦ Only AUC bioequivalent by NCA
	NCA	1.05	[0.92; 1.21]	1.07	[0.91; 1.26]	

- Design optimisation using Fedorov Wynn algorithm
 - Crossover trial with 16 monkeys and 6 samples per monkey and period
- Bioequivalence test on clearance (equivalent to test on AUC)
- Parameter estimates of previous NLMEM analysis
 - Slight treatment effect: $\beta_{T,CL/F}$ = -0.05
 - No period or sequence effect
 - Design taking into account WSV

Evaluation and optimisation of the design of the crossover trial on monkeys using PFIM 3.2									
Design	Sampling times	Power	Number of subjects needed*	Number of samples needed*					
Original	$0.01,0.33,2,3,4,5,8,12,15,19,31,43~\rm{days}$	0.9	16	384					
Optimal	0.01, 2, 3, 4, 5, 31 days	0.85	19	228					
* for a power of 0.9									

- \diamond 16 monkeys to show PK similarity on CL/F by NLMEM using original design
- Close results between original and optimal designs with 0.41 times less samples

Conclusion

- Evaluation of PFIM
 - SE_{pred} of treatment effect correctly predicted
 - \Rightarrow Computation of expected power and number of subjects needed
- Evaluation/optimisation of PK similarity trials analysed trough NLMEM Requiring the knowledge of the model and its parameters
 - Allowing to reduce the number of samples per subject
 - ⇒ PFIM: efficient tool for designing PK biosimilarity studies

[1] FDA. Guidance on statistical approaches to establishing biosequivalence (2001)
 [2] EMEA. Guidance on investigation of bioavaliability and biosequivalence (2001)
 [6] <u>http://www.numlik.arg</u>
 [6] Dubais, 6 Actiger S, Pageols et and Mentre F. *Fusional Control* (2017)
 [7] Anhard X and Sam
 [4] Dubais, 6 Actiger S, Pageols et and Mentre F. *Fusional Control* (2017)
 [7] Anhard X and Sam
 [9] Obleher GW. *The Actigence Control* (2017)

en TT, Bazzoli C and Mentré F. A mson A Biosta

U NOVARTIS

^(0.01) n PK pa