

Use of item-based non-linear mixed effects model to improve confidence in Phase III clinical trial decision-making

Carolina Llanos-Paez¹, Claire Ambery², Shuying Yang², Misba Beerahee², Elodie L. Plan¹, Mats O. Karlsson¹

1. Department of Pharmacy, Uppsala University, Uppsala, Sweden

2. Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline plc, London, UK

 29^{th} PAGE conference - 7^{th} September 2021

Failures in clinical drug development Phase II & III

	Reasons for failure		
	Phase II	Phase III	
Efficacy	48%	55%	
Safety	25%	14%	
Strategy	21%	14%	
Others	6%	17%	

Failures in clinical drug development Phase II & III

Early termination of "poor" assets

Efficacy failures:

Insufficient knowledge about target population

	Reasons for failure		
	Phase II	Phase III	
Efficacy	48%	55%	
Safety	25%	14%	
Strategy	21%	14%	
Others	6%	17%	

- Insufficient sample size
- Large uncertainty in drug efficacy estimate
- Insufficiently powerful analysis methods

Chronic Obstructive Pulmonary Disease (COPD)

- Outcomes of interest in efficacy trials:
 - Airway obstruction (Forced Expiratory Volume in 1 second FEV₁)
 - Dyspnea (Transition Dyspnea Index TDI)
 - Health status (St. George Respiratory Questionnaire SGRQ)
 - Exacerbations
 - Patient reported Outcomes (PROs):
 - Reported directly by the patient
 - Increasingly used in drug development

How do we "measure" disease? PRO in COPD

- **EXACT** 14 questions related to COPD symptoms
- E-RS:COPD 11 questions specifically related to respiratory symptoms

Item number	Item-level construct	Score	Symptom construct
7	Breathless today	0 - 4	
8	Breathless with activity	0 - 3	
9	Short of breath – personal care	0 - 4	Breathlessness
10	Short of breath - indoor activity	0 - 3	
11	Short of breath - outdoor activity	0 - 3	
2	Cough frequency	0 - 4	
3	Mucus quantity	0 - 3	Cough and sputum
4	Difficulty with mucus	0 - 4	
1	Congestion	0 - 4	
5	Discomfort	0 - 4	Chest symptoms
6	Tightness	0 - 4	
12	Tired or weak	0 - 4	
13	Sleep disturbance	0 - 4	Additional attributes
14	Scared or worried	0 - 3	

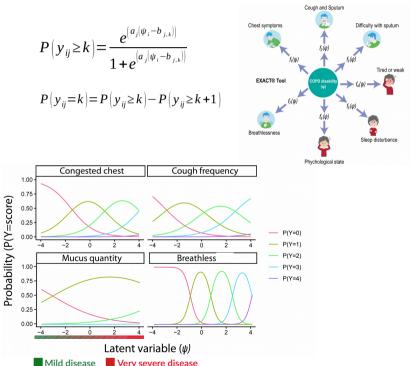
EXACT total scores uses all 14 items with logit scoring transformed to a 0 to 100 interval-level scale; E-RS:COPD scores are based on summation to yield ordinal-level scales with a total score ranging from 0 to 40

How are such data typically analysed?

Mixed Model Repeated Measures (MMRM)

- Total score analysis
- Non-ignorable missing data requires a sensitivity analysis
- Time is handled as discrete variable

Item number	Item-level construct	Score	Symptom construct
7	Breathless today	0 - 4	
8	Breathless with activity	0 - 3	
9	Short of breath – personal care	0 - 4	Breathlessness
10	Short of breath – indoor activity	0 - 3	
11	Short of breath – outdoor activity	0 - 3	
2	Cough frequency	0 - 4	
3	Mucus quantity	0 - 3	Cough and sputum
4	Difficulty with mucus	0 - 4	
1	Congestion	0 - 4	
5	Discomfort	0 - 4	Chest symptoms
6	Tightness	0 - 4	
12	Tired or weak	0 - 4	
13	Sleep disturbance	0 - 4	Additional attributes
14	Scared or worried	0 - 3	


Sum of scores

- Mathematical models expressing the probability of the particular response to a scale item as a function of an underlying trait or latent variable
- All questionnaire information is used
- Handles non-ignorable missingness
- Increased power to detect drug effect

Alternative analysis

Item-based response model (IRM)

IRM in COPD EXACT PRO data

Phase II

Phase III?

Observational Study > AAPS J. 2019 Apr 26;21(4):60. doi: 10.1208/s12248-019-0319-9.

A Novel Method for Analysing Frequent Observations from Questionnaires in Order to Model Patient-Reported Outcomes: Application to EXACT® Daily Diary Data from COPD Patients

Eva Germovsek ¹, Claire Ambery ², Shuying Yang ², Misba Beerahee ², Mats O Karlsson ¹, Elodie L Plan ³

> AAPS J. 2021 Jun 2;23(4):79. doi: 10.1208/s12248-021-00600-1.

Improved Decision-Making Confidence Using Item-Based Pharmacometric Model: Illustration with a Phase II Placebo-Controlled Trial

Carolina Llanos-Paez 1 , Claire Ambery 2 , Shuying Yang 2 , Maggie Tabberer 3 , Misba Beerahee 2 , Elodie L Plan 1 , Mats O Karlsson 4

IRM in COPD EXACT PRO data

Phase II

Observational Study > AAPS J. 2019 Apr 26;21(4):60. doi: 10.1208/s12248-019-0319-9.

A Novel Method for Analysing Frequent Observations from Questionnaires in Order to Model Patient-Reported Outcomes: Application to EXACT® Daily Diary Data from COPD Patients

Eva Germovsek ¹, Claire Ambery ², Shuying Yang ², Misba Beerahee ², Mats O Karlsson ¹, Elodie L Plan ³

> AAPS J. 2021 Jun 2;23(4):79. doi: 10.1208/s12248-021-00600-1.

Improved Decision-Making Confidence Using Item-Based Pharmacometric Model: Illustration with a Phase II Placebo-Controlled Trial

Carolina Llanos-Paez 1 , Claire Ambery 2 , Shuying Yang 2 , Maggie Tabberer 3 , Misba Beerahee 2 , Elodie L Plan 1 , Mats O Karlsson 4

Phase III?

Clinical Trial > Adv Ther. 2018 Jan;35(1):56-71. doi: 10.1007/s12325-017-0650-4. Epub 2018 Jan 8.

Once-Daily Triple Therapy in Patients with COPD: Patient-Reported Symptoms and Quality of Life

Maggie Tabberer ¹, David A Lomas ², Ruby Birk ³, Noushin Brealey ³, Chang-Qing Zhu ⁴, Steve Pascoe ⁵, Nicholas Locantore ⁵, David A Lipson ⁵ ⁶

Phase III, randomized, double-blind, double dummy, parallel-group, multicenter study to evaluate once daily *fluticasone furoate/umeclidinium/vilanterol* (FF/UMEC/VI) (100 ug/62.5 ug/25 ug) inhalation powder versus twice daily *budesonide/formoterol* (BUD/FOR) (400 ug/12 ug) in patients with COPD

Aim & Methods

To illustrate how a **new methodology** to analyse **PRO data** based on a longitudinal **IRM improves confidence** in a **Phase III clinical trial** endpoint compared with a **MMRM** analysis.

Aim & Methods

To illustrate how a **new methodology** to analyse **PRO data** based on a longitudinal **IRM improves confidence** in a **Phase III clinical trial** endpoint compared with a **MMRM** analysis.

Step 1^a – IRM

- Item characteristic functions
- Graded response model (a logistic transformation to model each item)
- Independent occasion approach
- Step 2^a Longitudinal model modeling Ψ_i :
- · Use the estimates of Ψ from step 1 as DV^{b}
- · Different parameters between treatment arms
- · Pre-specified Weibull model
- \cdot Smoking status and geographical regions on $\psi_{i,t=0}$

Ψ_i: Individual latent variable

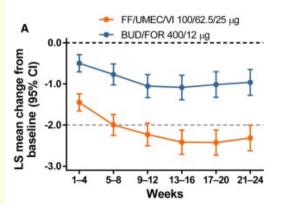
a: Analysis performed using NONMEM v.7.4.4 with an Intel FORTRAN compiler and PsN v.5.1.0 b: Schindler et al. Pharm Res 2018;35:122

Aim & Methods

To illustrate how a **new methodology** to analyse **PRO data** based on a longitudinal **IRM improves confidence** in a **Phase III clinical trial** endpoint compared with a **MMRM** analysis.

Step 1^a – IRM

- Item characteristic functions
- Graded response model (a logistic transformation to model each item)
- Independent occasion approach


Step 2^a - Longitudinal model - modeling Ψ_i :

- · Use the estimates of Ψ from step 1 as DV^{b}
- · Different parameters between treatment arms
- · Pre-specified Weibull model
- \cdot ~ Smoking status and geographical regions on $\psi_{_{i,t=0}}$

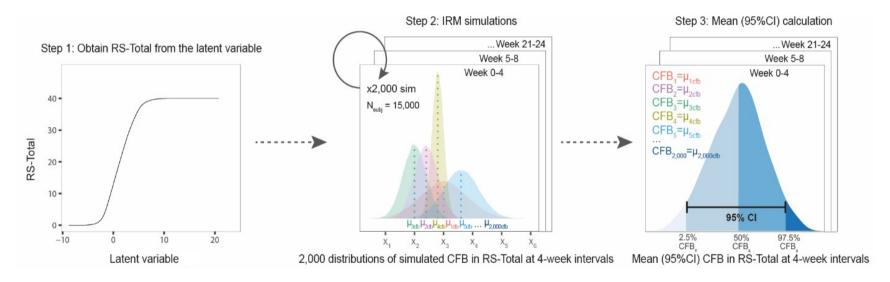
Step 3^a - Total score (RS-total)^c simulations and CI calculation for each treatment arm

- Perform simulations including parameter uncertainty (\$PRIOR)
- Calculate 95% CI Mean difference in total score between baseline and four week intervals:
 - Week 0 4, week 5 8,
 - week 9 12 ...

Published MMRM results

Tabberer et al. Adv Ther 2018; 35:56-71

- a: Analysis performed using NONMEM v.7.4.4 with an Intel FORTRAN compiler and PsN v.5.1.0
- b: Schindler et al. Pharm Res 2018;35:122


 Ψ_i : Individual latent variable

c: Total score from the E-RS:COPD questionnaire

Simulations

Including parameter uncertainty

Simulations included uncertainty for each parameter value (\$PRIOR) **NWPRI**:

- Multivariate normal distribution for THETAs
- Inverse Wishart distribution for OMEGAs

Sample size (N)

Data

Baseline characteristics	FF/UMEC/VI (n=907)	BUD/FOR (n=894)	
Age (years)	64.2 (8.56)	63.6 (8.73)	
FVC (L)	2.84 (0.80)	2.87 (0.79)	
FEV_1 (L)	1.25 (0.46)	1.24 (0.45)	
Male (n)	675 (74%)	658 (74%)	
Smoker (n)	396 (44%)	392 (44%)	
COPD GOLD disease status	Moderate: 298 (33%) Severe: 501 (55%) Very severe: 107 (12%)	Mild: 1 (0.1%) Moderate: 290 (32%) Severe: 477 (53%) Very severe: 124 (14%)	
RS- total score ^a	12.2 (5.85)	12.9 (5.96)	

Values are mean (SD) or n (%); a: scores were calculated as the mean value during baseline period defined as from day -14 to day -1; FVC: forced vital capacity; FEV_1 : forced expiratory volume in one second; GOLD: global initiative for chronic obstructive lung disease; RS-total score ranged from 0 to 40; In this analysis, nine patients were excluded from the intention to treat population of the FULFIL clinical trial (NCT02345161) for the following reasons: absence of E-RS:COPD score data for the whole study period (4 patients), dispensing errors (4 patients), and missing recorded time (1 patient).

Parameter estimates

Longitudinal model

$\Psi_i(t) = \Psi_{i,t=0} + R_{MA}$	$_{Xi} \cdot \left(1 - e\left(-\left(\frac{\ln(2)}{T_{Ri}}\right)\right)\right)$	$(\cdot t)^{\gamma})) + Offset_i$
-------------------------------------	--	-----------------------------------

- Weibull describes a late onset effect
- Offset near-instant or potentially symptomatic drug effect

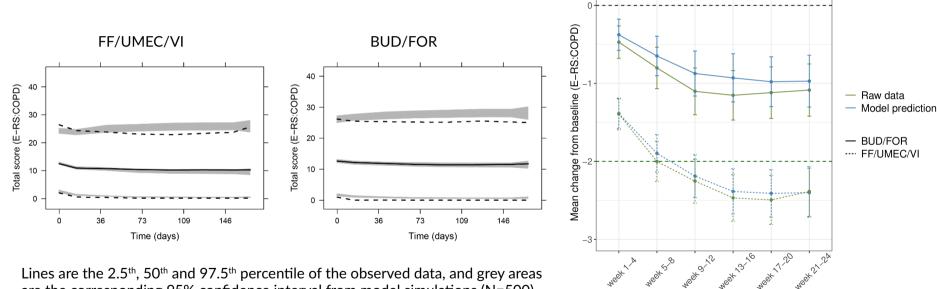
Parameter	FF/UMEC/VI	BUD/FOR	
Falameter	Value (RSE)	Value (RSE)	
Baseline ($\Psi_{i,t=0}$) ^a	0.33 (0.23)	0.29 (0.28)	
Time of response (T _R)	0.08 (0.03)	0.08 (0.03)	
Maximum response (R _{MAX})	-0.31 (0.11)	-0.16 (0.25)	
γ	9.27 (0.13)	16.9 (0.75)	
Offset	-0.27 (0.08)	-0.08 (0.30)	
ω^2 Baseline	1.09 (0.03)	1.47 (0.03)	
ω^2 Time of response	0.45 (0.03)	0.46 (0.03)	
ω^2 Maximum response	0.89 (0.04)	0.98 (0.06)	
ω ² Offset	0.37 (0.05)	0.42 (0.05)	
RUV	0.32 (0.02)		

a: Effects of smoking status and geographical regions on $\psi_{it=0}$ were included in

the model as these covariates were considered in the MMRM analysis

15

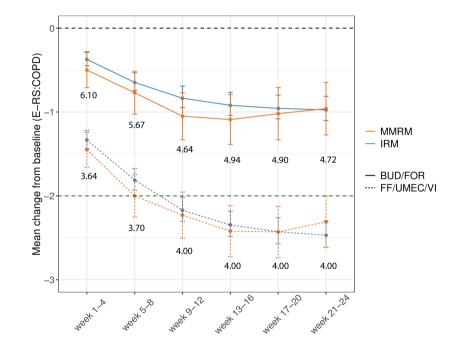
Parameter estimates


Longitudinal model

Covariates	Value (RSE)		Correlation	Value (RSE)
Smoking effect	0.13 (0.62)	FF/UMEC/VI	ω^2 Maximum response~ ω^2 Offset	11% (0.24)
Region 1	-0.64 (0.13)	FF/OMEC/VI	ω^2 Baseline ~ ω^2 Offset	-12% (0.20)
Region 3	-0.61 (0.13)	BUD/FOR	ω^2 Maximum response~ ω^2 baseline	-13% (0.17)
Region 4	-0.20 (0.40)	BOD/FOR	ω^2 Baseline~ ω^2 Offset	-10% (0.27)
Region 5	-0.41 (0.27)			
Region 6	-0.98 (0.12)			

Region 1 (21%): Germany, Greece, Italy Region 2 (24%): Russian Federation, Ukraine Region 3 (21%): Bulgaria, Hungary, Romania, Slovakia Region 4 (18%): Czech Republic, Estonia, Poland Region 5 (6%): China, Republic of Korea Region 6 (10%): Mexico

Model predictive performance



Lines are the 2.5th, 50th and 97.5th percentile of the observed data, and grey areas are the corresponding 95% confidence interval from model simulations (N=500)

Precision in outcome measures

- The IRM improved precision of the estimated drug effect compared to MMRM
- ✓ A 4.0 (FF/UMEC/VI) and 4.72 (BUD/FOR) times larger sample size for the MMRM analysis to achieve the precision obtained with IRM at week 21 – 24

Discussion & conclusion

- Advantage of using a non-linear mixed effect model-based analysis of Phase III clinical itemresponse level data, over MMRM for the same clinical endpoint in both methods (IRM and MMRM)
- Proposed methodology is applicable to any item-level data
- IRM may improve decision-making in drug development:
 - Prediction of outcomes from short term to long term study
 - Smaller studies sizes and more informative analysis

Acknowledgments

- Maggie Tabberer for her contribution to the data analysis and interpretation
- **GSK** funded this study in the form of a research payment to Uppsala University
- Pharmacometrics group Uppsala university
- Scientific organising committee 29th PAGE 2021

Conflict of interest: CL-P, EP and MOK declare that they have no conflict of interest. CA, SY, and MB are GSK employees and hold GSK shares