INFLUENCE OF THE DESIGN ON TESTING THE EFFECT OF A GENETIC COVARIATE ON PHARMACOKINETIC PARAMETERS, WITH THE SAEM ALGORITHM

Julie Bertrand, Emmanuelle Comets and France Mentré INSERM, U738, Paris, France ; Université Paris 7, Paris, France

CONTEXT

- Increasing number of investigations on the role of genetic covariates in pharmacokinetics (PK) and/or pharmacodynamics (PD)
- \blacklozenge High diversity in analysis methods with no consensus
 - mainly non-compartmental approach followed by one-way analysis of variance (ANOVA) on the individual parameters
 - $-\operatorname{more}$ sophisticated approaches using nonlinear mixed effects models (NLMEM)
 - * concentrations $y_{i,j}$ of the individual i = 1, ..., N at times $j = 1, ..., n_i$ are described as

$$y_{i,j} = f\left(t_{i,j}, \theta_i\right) + \epsilon_{i,j}$$

with $\epsilon_{i,j}$ the residual error

 θ_i is the vector of the subject specific parameters of the nonlinear function f

 $\theta_i = \mu \cdot e^{\eta_i}$

- where η_i follow a gaussian distribution with zero mean and variance matrix Ω
- ^k accommodation of different designs (sparse or rich data)
- * larger population providing information on genes with rare genotype or multiple alleles

OBJECTIVE

RESULTS

♦ Type I error and power with SAEM

	N=40/n=4		N=80/n=2			N=100/n=4,1			N=200/n=4	
	Size	Power	\mathbf{Power}_{c}	Size	Power	\mathbf{Power}_{c}	Size	Power	\mathbf{Power}_{c}	Size
ANOVA	5.3	71.1	70.9	6.4	93.4	91.5	4.4	79.5	78.3	5.0
Wald	8.9*	81.8	73.0	8.7*	95.5	92.5	8.8*	85.7	81.8	5.1
\mathbf{LRT}	7.6*	78.6	73.3	7.8*	94.6	92.2	7.4*	82.9	79.7	5.9

* Prediction interval for a value of 5% = [3.7 - 6.3]

- -ANOVA: correct type I error estimate regardless of the design
- Wald and LRT
- * correct type I error estimate for the N=200/n=4 design
- * similar type I error inflation for the N=40/n=4, N=80/n=2 and N=100/n=4,1 designs

- * We consider the effect of a diploid single nucleotide polymorphism (SNP) on the p^{th} PK parameter
 - -C the wild type replaced with T the mutant allele
 - $-\mathbf{k}{=}3$ possible genotypes (G): wild homozygote CC, heterozygote CT , mutant homozygote TT

$$heta_{p,i} = \mu_p \cdot eta_{G_i} \cdot e^{\eta_{p,i}}$$

with $\beta_{G_i} = \{1, \beta_1, \beta_2\}$ for $G_i = \{CC, CT, TT\}$

- \clubsuit We want to evaluate by means of simulation:
 - $-\,{\rm three}$ methods to test for a gene effect based on NLMEM
 - the influence of the study design on the performance of these three tests

METHODS TO TEST FOR A GENE EFFECT

- \blacklozenge Definition of the models used in the three tests
 - $-M_{base}$: the model without the gene effect $\{\beta_1 = \beta_2 = 1\}$ i.e. $\{CC = CT = TT\}$
 - $-M_{mult}$: the model including the gene effect $\{\beta_1 \neq \beta_2 \neq 1\}$ i.e. $\{CC \neq CT \neq TT\}$
- ♦ ANOVA
 - -data analysed with M_{base}
 - -comparison of the empirical Bayes estimates (EBE) of the parameter of interest between the k groups of genotypes
 - $-\operatorname{statistic}$ following a Fisher with (k-1, N-k) df
- \clubsuit Wald global test
 - -data analysed with M_{mult}
 - -computation of the statistic $W = \begin{pmatrix} \beta_1 1 \\ \beta_2 1 \end{pmatrix}^T \cdot \Sigma^{-1} \cdot \begin{pmatrix} \beta_1 1 \\ \beta_2 1 \end{pmatrix}$ with Σ the block for β_1 and β_2 of the estimation variance matrix
- –statistic following a χ^2 with (k-1) df
- \diamond Likelihood ratio test (LRT)

- [<] analogous powers accross tests for each design
- ^k different powers accross designs with a total of 160 observations
- * highest power achieved for the sparse design, N=80/n=2
- \Rightarrow Shrinkage on V/F

previous works of Savić⁵ show that a shrinkage of 50% (when computed as a variance ratio) can impact test performance
design with N=100/n=4,1 → shrinkage
* essentially due to the 80 patients with n=1

FIGURE 1: Shrinkage on V/F from M_{base} on the 1000 data sets simulated under H_0

\blacklozenge Precision of estimation

- -comparison of the likelihood of M_{base} and M_{mult}
- -computation of the statistic $LRT = -2 \times (L_{base} L_{mult})$ with L_{base} and L_{mult} the log-likelihood of M_{base} and M_{mult} , respectively
- statistic following a χ^2 with (k-1) df
- \diamond Parameter estimation using the exact algorithm SAEM (MONOLIX¹version 2.1)
 - use of Monte Carlo Markov Chain methods and a stochastic version of the EM algorithm
 - estimation of the model likelihood using importance sampling
 - estimation of the standard errors using a linearisation from individual conditional estimates

THE SIMULATION STUDY

\clubsuit Simulation settings

- pharmacokinetic framework
- * one compartment model with first order absorption and elimination at steady state * parameters: absorption rate k_a , elimination rate k and apparent volume of distribution V/F
- * simulated values set based on preliminary analysis of indinavir concentrations²
- genetic framework
- * two biallelic single nucleotide polymorphisms SNP_1 (24% CC, 48% CT and 28% TT) and SNP_2 (29% GG, 44% GT and 27% TT) inspired from exon 26 and 21 of the ABCB1 gene³
- * genotypes drawn from these distributions for each individual of the dataset
- * effect on the drug bioavailability through the parameter $V\!/F$

\diamond Designs

	N=40/n=4	N=80/n=2*	N=100/n=4,1	N=200/n=4**
Total of observations	160	160	160	800
Number of groups	1	4	2	1

FIGURE 2: Boxplots of estimated RSE and empirical RSE (blue strokes) for V/F using M_{base} and V/F, β_1 and β_2 using M_{mult} under H_0 and H_1 with SAEM

- among the three designs with a total of 160 observations *N=80/n=2 \geq N=100/n=4,1 \geq N=40/n=4 for precision of estimation on β_1 and β_2

DISCUSSION

- \clubsuit ANOVA on EBE from the model without gene effect
 - $-\operatorname{best}$ performance in terms of type I error: no effect of the shrinkage
 - less sensitive to unbalanced design
- our simulation setting (considering an effect on V/F) may not have really approached the limits of ANOVA

\Leftrightarrow Wald test and LRT

-slight inflation on designs not yielding asymptotic conditions resulting from a trade off N against n

		$30/(1,\!3)$		
Patients per group	$40/(1,\!3,\!6,\!12)$	$10/(3,\!12)$	$20/(1,\!3,\!6,\!12)$	$200/(1,\!3,\!6,\!12)$
/Sampling times		$30/(6,\!12)$	80/(12)	
		$10/(1,\!12)$		
Number of data sets H_0	1000	1000	1000	1000
simulated H_1	1000	1000	1000	_

*Design optimized using PFIM Interface 2.1^4

**Design with more samples to be closer to asymptotic conditions, for evaluation of type I error

\clubsuit Evaluation of tests

-tests

* type I error (size)

* power accross designs with the same total number of samples

* corrected power (power_c) with as threshold the 5th percentile of the P value distribution under H_0

¹ Lavielle. (2005). www.monolix.org.
 ² Bertrand, Comets, Mentré. J. Biopharm. Stat. (in press).
 ³ Sakaeda, Nakamura, Okumura. Biol. Pharm. Bull. (2002).

During this work, Julie Bertrand was supported by a grant from Servier Research Group.

– degrees of freedom for the χ^2 statistic do not account for N and n

 \clubsuit Precision of estimation

– power of tests is linked to precision of estimation for β^6

CONCLUSION

- \Rightarrow Inference on genetic effect does not necessarily require a conventional design with extensive sampling
 - asymptotic issues on type I error can be handled
 - * empirical correction by simulation or permutation
 - * investigation of t and F-approximate statistics for the Wald test
 - large power for optimized study with only 2 samples per patients

◆ Further studies are required to provide recommendations on which test to use depending on the design

université

DIDEROT

PARIS

⁴ Retout, Mentré. J. Pharmacokinet. *Pharmacodyn.* (2003). www.pfim.biostat.fr.
⁵ Savic, Karlsson. *PAGE 16* (2007). www.page-meeting.org/?abstract=1087.
⁶ Retout , Comets , Samson , Mentré . *Stat. Med.* (2007).