

Modelling the interaction between Irinotecan and efflux transporters inhibitors :

A KPD tumour growth inhibition model including interaction components

Alexandre SOSTELLY¹, Léa PAYEN ², Benjamin RIBBA ³, Attilio DI PIETRO ⁴, Pierre FALSON ⁴, Ahcene BOUMENDJEL⁵, Pascal GIRARD ^{1,6}, Michel TOD ^{1,7}

¹ EA3738 Ciblage Thérapeutique en Oncologie, Faculté de Médécine Lyon-Sud, Lyon; ² Institut des Sciences Pharmaceutiques et Biologiques, Lyon
 ³ INRIA Rhône Alpes, Project Team NUMED, Ecole Normale Supérieure de Lyon, Lyon; ⁴ Institut de Biologie et Chimie des Protéines, Lyon
 ⁵ Département de Pharmacochimie Moléculaire, Université Joseph FOURIER, Grenoble; ⁶ INSERM; ⁷ Hospices Civils de Lyon, Lyon
 Introduction

• ATP Binding Cassette (ABC) transporters play an important role in anticancer drug resistance.

- Breast Cancer Resistance Protein (*BCRP*) is an ABC transporter involved in the efflux of a wide range of substrates such as Irinotecan (*CPT-11*) and its active metabolite SN38. BCRP is thus involved in CPT-11 resistance.
- MBLI87, a new BCRP inhibitor, has shown high activity against BCRP efflux in *in vitro* studies¹ and also against CPT-11 BCRP mediated resistance in xenografted mice².

Objectives

To model the interaction between BCRP inhibitors and CPT-11 in SCID mice with CPT-11 resistant xenografts

To compare MBLI87 effects with the BCRP reference inhibitor, gefitinib against CPT-11 BCRP mediated resistance

Data

- 60 SCID mice were inoculated with CPT-11 resistant or non resistant tumour cells at each flank
- Mice received drugs during a 2-week period followed by a 2-week rest period during 8 weeks
- 6 treatment arms : Control, CPT-11, Gefitinib, MBLI87 CPT-11+Gefitinib, CPT-11+MBLI87
- Tumour measurements (length and width) were assessed every 2 days after the 1st drug administration
- Geometric mean of the 4 measures (length, width on each flank) was calculated for each measure

← Geometric mean : Dependent Variable Methods

- 2 families of model were tested :
 - Interaction models (Minto³, Greco⁴)
- Tumour growth inhibition (*TGI*) models (Claret⁵, Simeoni⁶)

Final Model Equations

$$\frac{dA_{X}}{dt} = -K_{e,X} * A_{X}$$

$$\frac{d\phi_{tumour}}{dt} = \frac{\lambda_{0} * \phi_{tumour}}{\left(1 + \left(\frac{\lambda_{0}}{\lambda_{1}} * \phi_{tumour}\right)^{\psi}\right)^{\frac{1}{\psi}}} - K_{2,X} * DR_{X} * \phi_{tumour}$$

$$DR_{X} = K_{e,X} * A_{X}$$
X: CPT-11, gefitinib, MBL187

In case of joint administration, K2 parameter accounts for the effect of MBLI87 and gefitinib on CPT-11 cytotoxic effect

$$K_{2,CPT-11} = K' + K'' * DR_{Inhibitors}$$
 Inhibitors: gefitinib, MBLI87

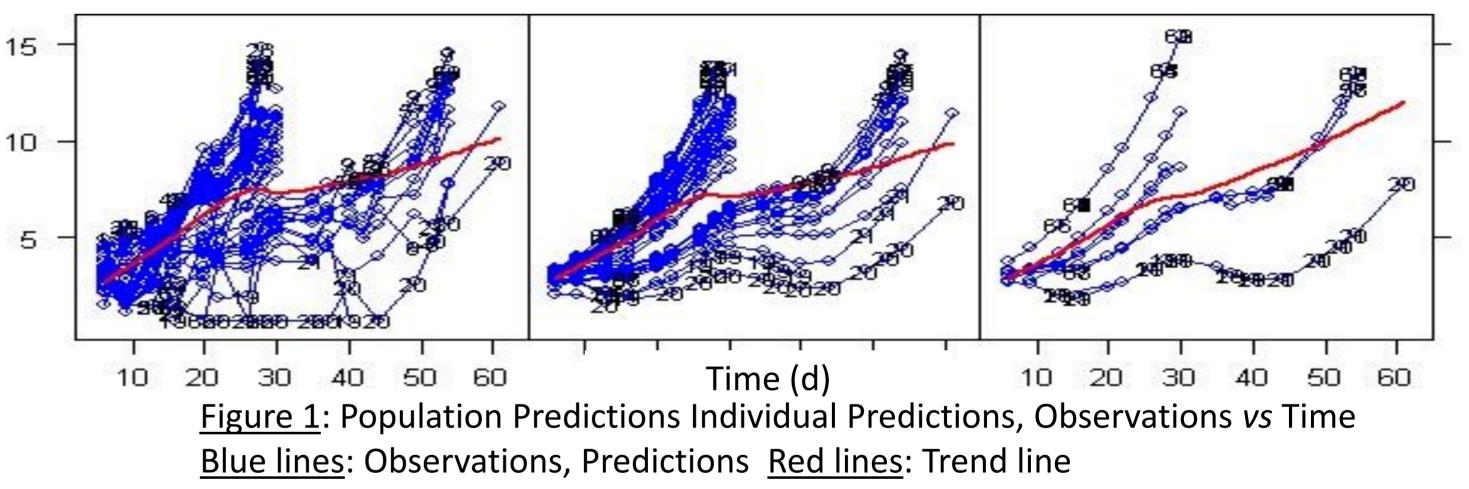
A : Drug amount with a constant elimination rate K_{e}

- λ_0, λ_1 : Gompertz parameters describing tumour growth
- Ψ: Exponential to linear phase switch parameter
- K₂ : Drug potency parameter
- K ": Interaction parameter

Final Model Evaluation

Observations

Individual Predictions


Population Predictions

- Some modifications were added to the TGI models :
 - A K-PD⁷ model was used to describing drug kinetics Drug effects were dependant on the amount of drugs
 - An interaction parameter was added to quantify the action of BCRP inhibitors on CPT-11 cytotoxic effect
- Model parameters were estimated by the FOCE method (NonMem VI)

Results

Interaction models

- Only one dose level is tested : Not possible to describe surface response as proposed by Minto
- Greco approach did not allow to describe properly tumour growth
- Tumour growth inhibition models
- Simeoni was preferred to the Claret model based on OFV and

Individual Predictions plot show good model performances **Parameter Estimates**

Parameter	Typical Value	%IIV
λ ₀ (d ⁻¹)	0.06	33
λ ₁ (mm.d ⁻¹)	0.2	46
K _{2, CPT-11} (mg ⁻¹)	0.3	-
K _{2, Gefitinib} (mg⁻¹)	10-2	-
K _{2, MBLI87} (mg⁻¹)	10-2	-
K" _{CPT-11,Gefitinib}	10-2	_
K" _{CPT-11, MLBI87}	5.3	_

Table 1: Parameter Estimates

Potency of BCRP inhibitors are estimated at 10⁻² mg⁻¹

AIC values

- Simeoni model : AIC = -453.0
- Claret model : AIC = -440.2
- Final model is a modified Gompertz tumour growth inhibition model with K-PD and interaction components :
 - CPT-11 effect is related to the amount of drug in the kinetic compartment
 - BCRP inhibitors modifies CPT-11 activity

References:

- 1. Boumendjel A *et al.* BioOrg Med Chem 2007
- 2. Arnaud O et al. J Cell Mol Med Submitted
- 3. Minto et al. Anestosiology 2000
- 4. Greco et al. Pharmacol Rev 1995
- 5. Claret *et al.* J Clin Oncol 2009
 - 6. Simeoni *et al.* Can Res 2004
 - 7. Jacqmin et al. J Pharmacokinet Pharmacodyn 2007

- \longrightarrow BCRP inhibitors alone have no effect
- A significant synergistic effect is found between MBLI87 and CPT-11 (K"=5.3)
- None is found with gefitinib (K"=10⁻²)
- There is no difference in tumour size kinetics between these both cohorts, model confirms that interaction is stronger between MBLI87 and CPT-11

Conclusion _____

Results show that MBLI87 is able to revert CPT-11 resistance at a 20-fold lower dose compared to gefitinib
Future use of the model will be optimizing a dose finding study in mice