Prediction of power of test of discrete covariates in population analyses and influence of design: application to gender effect in joint pharmacokinetic models of nucleoside analogs and their active metabolites

	Caroline Bazzoli Sul	vio Rot	out From	onico Nontrá	ζ.		Instituts thématiques	Inserm	
DIDEROT	Caronne Bazzon, Sylvie Ketout, France Mentre						Institut national de la santé et de la recherche médicale		
	Co	ontext		, i unis, i i	Tunce				
Population design evaluation and optimization for multiple response models ¹ ¹ Methodology based on the Fisher information matrix (M _F) ² Linearization of M _F using a first order Taylor expansion Extension of this methodology for models with parameters quantifying influence of discrete covariates ^{2,3} ² Prediction of the power of the Wald test of a discrete covariate ² Computation of the number of subjects needed to achieve a given power → Implementation in PFIM (a R function)			 Nucleoside reverse transcriptase inhibitors (NRTI) Antiretroviral therapy for HIV infected patients Metabolism of NRTI in an intracellular triphosphate (TP) metabolite Active metabolite: important for efficacy and toxicity of NRTI Complex and costly assay for measurement of intracellular concentrations Clinical trials on pharmacokinetic (PK) of NRTI^{4,5} Clinically important gender differences on intracellular concentrations Cophar 2 ANRS111 trial⁶ PK of 2 NRTI: Zidovudine (ZDV) and lamivudine (3TC) 						
	Obj	jective	es						
To predict power	of tests of gender effect and to stud of nuclesoside reverse transcrip	y the infl ptase inh	uence of a ibitors and	lesign in pop l their active	ulation pha metabolite	armacokine e	tic analyses		
Population	pharmacokinetic analyse	es of N	RTI a	nd intrac	cellular	metabo	lite		
harmacokinetic models ⁷ Ka (ZDV) TRO (3TC) F. D \longrightarrow V CI Identifiable parameters: ka, CI/F, V/F, O Population design (<i>empirical design</i>) Plasma concentration of ZDV and 3TC $_{9}$ 75 patients with 4 samples before and at 1 Intracellular concentrations of ZDV-TP $_{9}$ 62 patients $_{11}$ patients with 4 samples before and a $_{26}$ patients with 4 samples before at 3 and 12h $_{25}$ patients with 1 sample at 3h after dr	V _m Cl _m ↓ Clm/(Fkm), Vm/(Fkm) at steady state I, 3 and 6h after drug administration and 3TC-TP at steady state It 1, 3 and 6h after drug administration after drug administration ug administration	Popu • Exp • Adc • SAI Inclu • 62% • ZD' • 3TC	llation an onential m litive and EM algorit sion of a to of Fema V-TP: Clm Tab Ka/Tk0 2.86 h ⁻¹ (-) 1.24 h (74%)	alysis nodel for the proportional thm impleme gender effect le / 38% of N n/(Fkm) incre /(Fkm) decr lc1. Population p C1/F 200 Lh ⁻¹ (54%) 22.1 Lh ⁻¹ (31%)	random ef error mode ented in the et β on the Male ease of 30% ease of 2.8 parameter esti V/F 234 L (77%) 94.8 L (24%)	ffects el Monolix V apparent n % in male (V 8% in male (V 175 L (58%) 0.91 L (47.5%)	2.3 software netabolite c Wald test: p = Wald test: p bjects variabilit $V_{m}/(Fk_m)$ 2.71 10 ³ L.h ⁻¹ (-) 28.0 L.h ⁻¹ (-)	earance = 0.16) = 0.46) es in %). β [95% CI] 0.287 [0.115; 0.688] -0.028 [-0.288; 0.232]	
	Prediction of the pow	er to	detect a	gender ef	ffect				
Study only for ZDV (Very small gende • Using the parameter estimates presente • Evaluation of the empirical design with 1 - Computation from the predicted SE or - Expected power to detect gender eff - Number of subjects needed for a po	r effect on 3TC) ed in Table1 PFIM 3.2 f β on Clm/(Fkm) with PFIM fect wer of 80%			Figure 1. PFIM and the number with a Type I error beta_Clm_Gender_2 0	3.2 output fo er of subjects a gender ef equal to 0.05 : Beta 95% cr .287 [-0.1;0.67]	Dr computation of needed for a point of the	of the expected j ower of 80% to o km).	vower letect	

- Type I error equal to 0.05

I

→ Expected power to detect gender effect: 31%

→ Number of subjects needed to detect gender effect for a power of 80%: 273 subjects

Design / power optimisation

Optimization with PFIM ⁸	Table3. Influence	of the desig	gn on the n	umber of sub	jects needed	to achieve a	power of 80% in	ncluding	
D-optimality: $det(M_{r})$		F	parameters	influencing t	y discrete co	ovariates.			
Federov-Wynn algorithm (FW)	Design	Sampling times		Proportions of subjects (%)	Number of subjects needed	Number of plasma samples	Number of intracellular samples	Total number of samples	
• Optimization of the number of subjects		ZDV	ZDV-TP						
Optimization of the sampling times in a given set specified by users	Empirical (E)	1, 3, 6, 12	-	15	273	1092	456	1548	
\rightarrow For a total cost of 400 samples as in the empirical design		1, 3, 6, 12	1, 3, 6, 12	15					
Ontimal "identical" design		1, 3, 6, 12	3,12	33					
		1, 5, 6, 12		1	177	709	709	1416	
e 4 identical sampling times for ZDV and ZDV-TP	Opt_Basic_Iden (OBI)	0.5,1, 3, 12	0.5,1,3,12	1	177	708	708	1410	
12 allowed sampling times among 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10 and 12h و	Opt Cov_Iden (OCI)	0.5,1, 3, 12	0.5,1,3,12	1	177	708	708	1416	
Optimal "different" design	Opt_Basic_Diff (OBD)	0.5,1, 3	3,12	1	195	585	390	975	
$_{1/2}$ different for ZDT and ZDV-TP \rightarrow Different sampling times	Opt_Cov_Diff (OCD)	0.5,1,3	2, 12	74	188	535	356	891	
1, 2, 3 or 4 sampling times per patient		0.5, 2	2,12	15					
Allowed sampling times: only \leq 4h for ZDV		0.5, 1, 3	12	11					
j mowed samping amost only _ m for 22 t	Figure2. For the different designs, number								
	of subjects needed	and intrace	ellular sam	ples. For a p	ower of 80%				
Table2. Design optimized using models without or with covariate.	8 -			Optiı و	nal designs v	s empirical o	lesign		
Basic model Covariate model	[™]					Ŭ			
(with no covariate) (with gender effect)	- 99				X Loss intercelluler measurements				
					→ Less IIII	accinuial mea	ISUICINCIIIS		

	Basic model	Covariate model			
	(with no covariate)	(with gender effect)			
"Identical" design	Opt_Basic_Iden	Opt_Cov_Iden			
"Different" design	Opt_Basic_Diff	Opt_Cov_Diff			

→ Less intracellular measurements

J Optimal "different" designs vs optimal "identical" designs

=> More reasonable cost

With a Type I error equal to 0.05 and with a given power equal to 0.8 :

 Beta
 95% CI
 exp(Beta)
 95% CI
 Number_subjects_n

 beta_Clm_Gender_2
 0.287
 [-0.1;0.67]
 1.332424
 [0.9;1.96]
 272.3515

Conclusion

3 Illustration of the influence of the design and the number of subjects needed to achieve a given power of the Wald test of discrete covariate for complex PK models

- J Great potential of PFIM 3.2 to optimize design and to control expected power of a Wald test
- $_{\odot}$ Extension of this work to compute power of test of absence of covariates ightarrow bioequivalence tests
- Bazzoli et al. Statistics in Medicine, 2009. 4. Anderson et al. AIDS, 2003. Retout et al. Journal of Biopharmaceatical Statistics, 2003. 5. Awecka et al. AIDS, 2006. Retout et al. Statistics in Medicine, 2007. 6. Devale et al. Fundamental and Clinical Pharmacology, 2009

zzoli et al. 10th International Workshop on Clinical Pharmacology of HIV therapy, 2009. (Poster) zzoli et al. 18th Meeting of the Population Group in Europe, St Petersbourg, Russia, 2009. (Software demonstration)