A PK/PD meta-analysis to assess inter-study variability and translational value of preclinical exposure-QTc relationships

Gotta V1, Cools F2, van Ammel K2, Gallacher DJ2, Visser SAG3, Morissette P4, Sannajust F4, Danhof M1, van der Graaf PH1

1Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands, 2Global Safety Pharmacology, Janssen Research & Development, Janssen Pharmaceutica NV, Belgium, 3Quantitative Pharmacology and Pharmacometrics and 4SALAR-Safety and Exploratory Pharmacology, Merck Research Laboratories, Merck & Co., Inc., PA, USA

Background

- Drug-induced QTc-interval prolongation (ΔQTc) is systematically assessed in preclinical cardiovascular (CV) safety studies as a surrogate for pro-arrhythmic risk in human.
- Such studies in conscious telemetered dogs (4-8 animals) can be based on varying designs (e.g. dose range, number of doses, route of administration, study duration, PK/PD sampling in same animals or a satellite group, no PK assessment).

Methods & Results

- The work-flow of this meta-analysis is shown below, followed by an illustration of main results.
- For moxifloxacin, inter-study variability (ISV) was additionally assessed in a hierarchical random-effects model1.

![Flowchart of meta-analysis](Image)

Consistency of ΔQTc-predictions at upper therapeutic exposure (Fig.1):

- The 95%CI of 13/14 (93%) study-predictions comprised the meta-prediction, despite varying structural models.
- Inter-study variability (ISV) of ΔQTc-predictions was 30% (range: 1-69%).

Model-based assessment of ISV (moxifloxacin):

- Including an ISV-level in the meta-model decreased between-subject variability (BSV) in PD by 10-26%, most on the hill coefficient.
- Estimated ISV (24-39%, RSE=100%) did not exceed BSV (28-37%).

Pharmacodynamic characterization (Fig.2):

The preclinical PDs of all 3 drugs was best characterized by Emax-meta-models (ΔQTcmax = 50-55ms or 20-22% from baseline).

Preclinical ΔQTc meta-predictions (therapeutic range):

- Moxifloxacin: 4–12 ms (2.9–5.6 μM, EC50: 11.6 μM)
- Dofetilide: 4–18 ms (0.4–2 nM, EC50: 4.2 nM)
- Sotalol: 14-19 ms (3.7-11 μM, EC50: 10.1 μM)

Translation: clinical ΔQTc predictions

- Expressed as %change from baseline, clinical & pre-clinical ΔQTc effects we overlapping

Summary & Conclusions

This first quantitative assessment suggests that consistent ΔQTc predictions can be obtained from highly varying preclinical studies by systematic PK/PD analysis → suitable for translational purpose

A 10% ΔQTc in the dog seems to correspond to an almost half-maximal effect (and ≥35ms ΔQTc in human) → 10% effect2 is an unsatisfying study sensitivity target → PK/PD analysis can improve the detection of small preclinical ΔQTc3