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» Parameters are well estimated (Table 1). The scatterplot of npd vs time computed by
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. N 2. Graphic illustration (Figure 3)
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Wlth Pr(y i = LOQ) /(LOQ = _21 sim(k) <1 0Q Figure 3. NPD vs time of 1 simulated dataset under different models at 3 LOQ levels (rich design)
. . H,(omit): NPD computed by omitting BQL data for the basic model. Hy, H; ..., H; .- NPD by new approach counting for BQL data under several models
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e Evaluation graph: scatterplot of npd (npde) vs time with the 10", 50 and percentiles evengforplar e amounts of BQL data P 1_mean H, 0.043 0.041 0.041
corresponding to observed data. To facilitate model evaluation, the 95% prediction intervals > hiah powger to detect model misspecification for H H; nean | 1.000 1000 1.000
for these selected percentiles of simulated data are added into graph as colored bands®! o fg” dataset, but quick decrease of power as the Vgt/g of Hyvere [ 1.000]0.494 ] 0.536
« Tests of npd (npde): Wilcoxon, Fisher and Shapiro Wilks tests are used ] BQL datain CreAses e b oty BOL data
» global p-value is obtained using Bonferroni correction » Design with 6 observations/subject, simulation H gggggﬁted on 1000 datasets simulated with the ricf
’ 0
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» Models: to simulate different validation datasets V Conclusion and perspectives
» “true” model (H,) inspired by the real data results » Omitting BQL data in model evaluation can lead to misleading conclusion in the presence of
> “false” models with modification in fixed (H; 4,) OF random effects parameters (H; ) large amounts of BQL data
* LOQ levels: 0, 20 or 50 copies/mL * The new method for computing the prediction discrepancies is a promising approach to take
« Computation of npd using the new approach: K = 1000 MC simulations into account BQL data in evaluation graphs
* Type | error and power using the global test of npd (or npde): 1000 validation datasets were * Intra-subject correlations should be taken into consideration when testing, and a
simulated for each scenario decorrelation method is currently under development in case of BQL data
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