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for continuous learning in precision dosing
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Continuous learning (PAGE 2018)
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Why continuous learning?

Improved drug efficacy / reduced toxicity
Increase trust in software

Reduce TDM sampling
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Data stream Numbers

~ 500 patients/day TDM
~ 15 drugs
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Continuous Learning in Model-Informed
Precision Dosing: A Case Study in Pediatric

Dosing of Vancomycin

Jasmine H. Hughes"*, Dominic M. H. Tong', Sarah Scarpace Lucas’, Jonathan D. Faldasz', Srijib Goswami"

and Ron J. Keizer”

Model-informed precision dosing (MIPD) leverages pharmacokinetic (PK) models to tailor dosing to an individual
patient’s needs, improving attainment of therapeutic drug exposure targets and thus potentially improving drug.
efficacy or reducing adverse events. However, selection of an appropriate model for supporting clinical decision
making is not trivial. Error or bias in dose selection may arise if the selected model was developed in a population

not fully representative of the intended MIPD population. One previously proposed approach is continuous learning,

in which an initial model is used in MIPD and then updated as additional data becomes available. In this case study
of pediatric vancomycin MIPD, the potential benefits of the continuous learning approach are investigated. Five
previously published models were evaluated and found to perform adequately in  data set of 273 pediatric patients
in the intensive care unit. Additionally, two predefined simple PK models were fitted on separate populations of
50-350 patients in an approach mimicking clinical implementation of automated continuous learning, With these
continuous learning models, prediction error using population PK parameters could be reduced by 2-13% compared
with previously published models. Sample sizes of at least 200 patients were found suitable for capturing the
interindividual variability in vancomycin at this institution, with limited benefits of larger data sets. Although comprised
mostly of trough samples, these sparsely sampled routine clinical data allowed for reasonable estimation of simulated
area under the curve (AUC). Together, these findings lay the foundations for a continuous learning MIPD approach.

Study Highlights

‘WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

[ Precision dosing is expected to improve patient outcomes,
however, models developed in one patient population may
perform poorly when translaced to a new patient population.
Conti Learning has trategy to improve
modelinformed precision dosing (MIPD) by tailoring a model
o the intended use population as more data become available.
WHAT QUESTION DID THIS STUDY ADDRESS?

B This study assessed the potential benefics of implementing
continuous learning and investigated the minimum amount of
addirional daa required to produce a tailored model in a pedi-
atric vancomyein intensive care population.

Pharmacokinetic (PK) models have been brought to the poine
of care, aided by development and deployment of sofeware tools
chat allow clinici heir patients' PK d

simulace dosing regimens.' Preliminary studies suggest tha this
model-informed precision dosing (MIPD) facilitates actainment
of therapeuric targers, reduces druginduced adverse events, and
improves clinical outcomes. " However, MIPD requires a model

‘WHAT DOES THIS STUDY ADD TO OUR KNOW-
LEDGE?

B This work shows chat even simple prespecified models tai-
lored to an organization match or outperform the predictive
performance of excernal models, and chat, for pediatric vanco-
n, the benefits of increasingly large data sets over 200 pa-
tients is minimal.

HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?

[ Rather than creating increasingly complex or niche mod-
els from large and multi-institutional data sets, MIPD models
could be tailored to the intended population using an auto-
mated continuous learning approach.

thar adequatcly describes paticne PKs for the drug of interst in
the incended population, or that at least adapes appropriately to

collected drug concentration data. Naive application of a
previously published model could introduce bias or imprecision
in dosc sclection. Developing a new model or validating existing
models for each new patient population requires a sufficiently
Large prior data set collected from a sufficiendly diverse group of
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Population pharmacokinetic (PK) studies demonstrate model-based
dosing for busulfan that incorporates body size and age improve clinical target
attainment as compared to weight-based regimens. Recently, for clinical dosing of
busulfan and TDM, our institution transitioned to a cloud-based clinical decision
support tool (www.insight-rx.com). The goal of this study was to assess the dose
decision tool for the achievement of target exposure of busulfan in children undergoing
hematopoietic cel transplantation (HCT).

Patients and Methods: Patients (N = 188) were grouped into cohorts A, B, or C based
on the method for initial dose calculation and estimation of AUC: Cohort A: Initial doses
were based on the conventional dosing algorithm (as outined in the manufacturers’
package insert) and non-compartmental analysis (NCA) estimation using the trapezoidal
ule for estimation of AUC following TDM. Cohort Bt Initial doses for busuifan were
estimated by a first-generation PK model and NCA estimation of AUG following TDM
Cohort C: Initial doses were calculated by an updated, second-generation PK model
available in the dose decision tool with an estimation of AUC following TDM

Results: The percent of individuals achieving the exposure target at the time of first PK
collection was higher in subjects receiving initial doses provided by the model-informed
precision dosing platform (cohort G, 75%) versus subjects receiving initil doses based on
either of the two other approachy nventional guidelin hort A, 25%; previous
population PK model and NCA parameter estimation, cohort B, 50%). Similarly, the
percent of subjects achieving the targeted cumulative busulfan exposure (CAUC) in cohort

Busulfan

Shukla P et al. Frontiers Pharmacol 2020

and improving neonatal ici inetic models using
aggregated routine clinical care data

Dominic M.H. Tong, Jasmine H. Hughes, Ron J. Keizer

Introduction: Model-informed precision dosing (MIPD) tailors dosing to a patient with the goal
of imizit ic effect while minimizing adverse relying on a

predictive inetic (PK) model. ing de-identified data across hospitals
accelerates comparison of model predictive performance and augmentation of models through
continuous leaming [1]. Prompted by a clinician observation that gentamicin peaks were
estimated less accurately than troughs in neonates, we used this aggregated data to evaluate
and improve existing neonatal gentamicin PK models.

Methods: Using de-identified data for 461 patients across 8 sites in the United States, we
evaluated three published PK models [2-4] for gentamicin in neonates on accuracy with root
mean square error (RMSE) and bias with mean percent error (MPE). We then predefined a
model based on critical assessment of existing PK models and trained it on part of the data set.

Results: The best performing model [3] resulted in an RMSE of 1.34 ug/mL and an MPE of
-56.7%. Surprisingly, after maximum a posteriori (MAP) Bayesian estimation of individual PK
prediction of peak i P to i using
ing the high ion (87%) in inter-individual variability
between clearance and volume decreased the RMSE of individualized peak predictions from
2.06 to 1.48 ug/mL. The predefined continuous learning model resulted in a 30% decrease of
RMSE compared to the published model.

Conclusions: We identified the model [3] with lowest error and bias among three published PK
models for gentamicin in neonates. We improved predictive performance in this model by
relaxing a correlation between clearance and volume and by training a continuous learning
model with a new covariate. This work highlights the benefit of combining data across clinical

sites with expert-guided conti learning for improving MIPD at the point of care.
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How can we update models automatically?
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NLME vs /deal/continuous learning algorithm

Aspect

Computational load

NLME 12 / MCMC 2 approaches

Intensive at scale

Ideal

Incremental estimation

Stability Dirty data = estimation instabilities Resilient to dirty data
Covariate effects Static Ad hoc
Dataset Combine data for estimation Federated

1T Chen et al. PAGE 2022
2 | avielle et al. PAGE 2022
3 Maier et al. CPT 2021



Insight

Define proposal distribution

Sample from proposal distribution

Calculate likelihood for each
parameter set

Calculate posterior distribution,
mean



Insight G3

Importance sampling?
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Define proposal distribution

Sample from proposal distribution

Calculate likelihood for each
parameter set

Calculate posterior distribution,
mode
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Posterior distribution

Composite of individual likelihoods

Calculate likelihood for new
individual & add to cumulative

Recalculate posterior density
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Posterior distribution

Composite of individual likelihoods

Calculate likelihood for new
individual & add to cumulative
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Technical implementation
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Technical implementation

New patient data

Dosing data
TDM data

Covariates

1

Sampled param.

Calculate MAP (1 likelihoood) sets for models
Calculate likelihoods parameter Individual
sets (e.g. 1000 likelihoods) likelihoods for

parameter sets

1. Dosne et al. JPKPD 2016
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Technical implementation

New patient data

Dosing data
TDM data

Covariates

l

Calculate MAP (1 likelihoood)

Calculate likelihoods parameter
sets (e.g. 1000 likelihoods)

Sampled param.
sets for models

Individual
likelihoods for
parameter sets

For 100 patients, for 1 model:
100 * (1000 + 1) = 100,100 records

For 1000 patients, for 5 models:
1000 * 5 * (1000 + 1) = 5M records

1. Dosne et al. JPKPD 2016



Insight G3

Technical implementation

New patient data

Dosing data
TDM data

Covariates MIPD software
l Potentially: filter

S - likelihoods, based on
ampled param. model, site, covariates.

Calculate MAP (1 likelihoood) sets for models
Calculate likelihoods parameter Individual gizl[filélj;[ieoso:]tsggrl
sets (e.g. 1000 likelihoods) likelihoods for ' ’

paramete.r S Use as new prior for

predictions, MAP est.

For 100 patients, for 1 model:
100 * (1000 + 1) = 100,100 records

For 1000 patients, for 5 models:

1000 * 5 * (1000 + 1) = 5M records
1. Dosne et al. JPKPD 2016
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Composite importance sampling

An approach to incrementally calculate the posterior by adding individual
likelihoods

Prerequisite: sampled parameter sets are static and sampled at start of analysis!

Advantages:
no need to re-estimate / resample whole dataset
ad hoc covariate analysis

federated

Disadvantage:

cannot adaptively explore the parameter space
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Caveats: curse of dimensionality
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Caveats: curse of dimensionality
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Caveats: curse of dimensionality
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Is CIS able to update model parameters in MIPD,
to improve predictive performance?
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Simulated example 1: one-compartment PK Biased estimate for Volume
Prior: 70 L

True: 50 L
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Simulated example 1: one-compartment PK

Biased estimate for Volume

Prior: 70 L
True: 50 L
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Simulated example 1: one-compartment PK

Allometric scaling
Prior: not implemented

True:
CL x (WT/70)0-75
V x (WT/70)

“Importance-weighted regression”
or

“Covariate Shift Adaptation” 1
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Simulated example 1: one-compartment PK Allometric scaling

Prior: not implemented

True:
CL x (WT/70)0-75
V x (WT/70)

“Importance-weighted regression”
or

“Covariate Shift Adaptation”

CL A o

0.75 1.00
exponent value, 90% ClI

Sugiyama, JMLR 2007
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Simulated example 1: one-compartment PK Allometric scaling

Prior: not implemented

True:
CL x (WT/70)0-75
V x (WT/70)

“Importance-weighted regression”
or

“Covariate Shift Adaptation”

CL A o

0.75 1.00
exponent value, 90% ClI

Sugiyama, JMLR 2007
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Simulated example 1: one-compartment PK

Genotype effect CL
Prior: 5L
True:
genotype A=4 L
genotype B=6 L
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SimUIated example 1 : One'COmpartment PK Genotype effect CL
Prior: 5L
True:
genotype A B genotype A=4 L

genotype B=6 L
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Simulated example 1: one-compartment PK

Genotype effect CL
Prior: 5L
True:
genotype A=4 L
genotype B=6 L
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Simulated example 1: one-compartment PK Genotype effect CL
Prior: 5L
True:
genotype — A — B genotype A=4 L

genotype B=6 L

0 o5 50 75 100
n patients in dataset
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Simulated example 2: neutropenia PK-PD Estimation of MTT & slope

mean transit time (MTT): +20%

drug effect (slope): +50%
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Simulated example 2: neutropenia PK-PD Estimation of MTT & slope

mean transit time (MTT): +20%

drug effect (slope): +50%
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Real-world data: gentamicin in neonates
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Real-world data: gentamicin in neonates improve biased model?
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Comparison to NLME
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Real-world data: gentamicin in neonates
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Real-world data: gentamicin in neonates

RMSE &
-~ NONMEM -e- CIS Comparison to NLME
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Real-world data: gentamicin in neonates

RMSE &
-~ NONMEM -e- CIS Comparison to NLME
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Summary

A simple continuous learning method for data streams

Advantages:
iIncremental estimation

ad hoc covariate analysis: train model per site

Drawbacks:

only lower-dimensional estimation, simpler models
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Future work

How many parameters can be estimated reliably?

How to apply safely in MIPD

What are appropriate diagnostics?
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Thank you for listening
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