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Goals of presentation - answer

What does a non-parametric population pk/pd  method do 

that I can’t do with a parametric method?

What does a NP estimate look like?

Where can I get access to an NP estimation method,

and how do the commonly available ones differ?

What are the advantages and disadvantages of NP

estimation?

What’s new in the field?

What still needs to be done?



Focus of non-parametric methods is on random effects



Some estimation approaches for the non-normal case

Mixture distributions ($MIX in NM, mixture of normals)

Non-parametric maximum likelihood

Non-parametric Bayesian (Dirichlet stick breaking priors)

Smooth non-parametric (e.g., polynomial times normal)

Semi-parametric maximum likelihood

(NP for random effects,

some parametric components as

in residual error function or fixed 

effects in covariate  models)



A brief history of likelihood-based NP approaches

1983 – B. Lindsay - maximum likelihood non- parametric estimator is a 

discrete distribution with at most Nsub support points

1986 – A. Mallet – NPML using vertex direction method; established

connection to optimal design criterion and  use of directional derivative

1992 – A. Schumitzky – NPEM – EM algorithm on a single 

large fixed grid of support points

1998 – present , Laboratory of Applied Pharmacokinetics– NPAG, 

NPOD with primal dual probability optimization and mobile support 

points resulting in greatly increased speed and accuracy relative to NPEM,  as 

well as complementary multiple model dosage program   (currently called 

Pmetrics and BestDose – NPAG variant is also in Phoenix NLME)

2006 – present  - NONMEM NONP method based on using EBE’s from

a prior parametric method run as support points, EM for probability 

optimization, and residual error and covariate model fixed effects from

parametric.   Extended by M. Karlsson’s group with ‘extended grid’ 

methodology, now  available in latest 2017 NONMEM release.



Some recent Ph.D. theses

X. Wang, 2015, U. of Auckland, “Mixture Models for 

Multivariate Observations”

P. Baveral, 2011, Uppsala, “Development and Evaluation of 

Nnonparametric Mixed Effects Models

J. Antic, 2009, Université Paul Sabatier – Toulouse, 

“Nonparametric methods for population PK and/or PD”

Y. Baek, 2006, Univ. of Washington,  “An Interior Point 

Approach to  Constrained Nonparametric Mixture  Models” 



Quick review of ML estimation properties

Consistent (true in parametric and non-parametric case)

(in parametric case, parameters converge to true values

as amount of data becomes large; in NP cumulative 

distribution function converges to true cumulative 

distribution function).

Asymptotically most efficient estimator in parametric case, 

with asymptotically normal parameter estimates.   Leads

to Fisher information based estimates of parameter

uncertainty.  N/A in NP case, so some other methodology 

such as bootstrapping is necessary.



From Leary et al, PAGE 2002





Asymptotic convergence rate of NPAG is same as parametric EM



From Leary et al, PAGE2004





Results from 2004-2005 inter-method blind comparison 



Non-parametric log likelihood LL(f(ETA)) is concave

If f is discrete on a grid of Npoint support points



Theorem – NPML estimate is discrete with at most Nsub points



Two parts to maximizing the NP likelihood

1.  Find optimal grid G={ETA(jpoint), jpoint=1,Npoint}

2.  Find optimal probabilities p(jpoint), jpoint=1,Npoint

Current and historical methods differ by how they approach

these two parts and whether they iterate over both parts

NPML iterates over both 1 and 2, but does only an approximate

job of getting optimal probabilities at each iteration, and only changes

adds one new grid point per iteration

NPEM starts with a large fixed grid, does only 1 iteration but with

accurate probabilities found by EM on the intial grid

NONP starts with a relatively small initial grid of ‘good’ points,

does one accurate probability optimization using EM, but like NPEM does

not change the grid.   2017 NONMEM7.4 now supports Uppsala ‘extended 

grid’ methodology

NPAG and NPOD iterate over relatively small grids, use a fast quadratically convergent  

primal dual probability optimization , change out multiple grid points per iteration,

and do at least some form of grid point position selection



Improving the current grid with a new candidate point ETA

Let   {G={ETA(j)}, p} be any grid and the associated optimized 

probabilities, and L(isub,jpoint) the corresponding  likelihood matrix

Then a better grid can be found by adding any point ETA such

that   DD(ETANEW)>0, where DD(eta) is the directional derivative

defined by

DD(ETA) = w’*Likelihood(ETA))

where w’(isub) =1./(L*p) 

The coeficients vector w is  the ‘dual solution’ 

Suggests maximizing DD(ETA) over ETA to find new grid points 

(NPOD idea) or at least using w to screen new candidate grid points –

(NPAG) - this essentially solves the ‘curse of dimensionality’ problem



Probability optimization methods

EM - used in NPEM, NONP

Reliable, but at best linearly convergent.  Very simple to

implement  (5 lines of MATLAB). Convergence rate slows down as  

number of grid  points increases and grid point spacing gets smaller.  

Fair restart properties if you add additional points to grid following 

an initial solution.  Requires interior point start.

Primal-Dual – used in Pmetrics NPAG, Phoenix NLME NPAG

Reliable, quadratically convergent.  Much faster than

EM.  Very insensitive to grid spacing.  Fair restart capabilities on 

new grid points.  Requires interior point start.

Non-Negative Least Squares –”New” method proposed by 

Y. Wang (2007, 2010).  Finite step convergence on each

iteration.  Insensitive to grid spacing and often faster than

primal-dual.  Good restart capabilities – does not need an interior point

start so you can start directly from a previous optimal solution on

the old grid.



EM  Method

EM method works by updating p with empirical Bayesian 

distributions (EBDs) induced by p -

pEBD(isub,jpoint)~ L(isub,jpoint)*p(jpoint)

pnew(jpoint) = mean_isub pEBD(isub,jpoint)

NP log likelihood is guaranteed to increase on each iteration by

Jensen’s inequality.   All likelihoods at each stage are exact (up to 

precision of model evaluation  - no numerical derivatives or matrix 

factorizations anywhere that can fail.



Primal Dual Interior Point Method (Burke, Baek, 2001)

Works by simultaneously solving the primal problems

Maximize sum (log(L*p)),   p≥0, sum(p(jpoint))=1

And the dual 

maximize sum (w(isub))

LT*w≤ones(npoint,1)

Inequalities are replaced by log barrier functions with a coefficient

That is gradually reduced to zero.   A Newton method is used to

Solve the resulting Kuhn-Tucker equations at each coefficient value.

The required first and second derivatives with respect to p and w

These can be evaluated analytically and only involve the already 

computed L(isub,jpoint) values.  There is one Cholesky factorization, 

but the PD method carefully controls the condition number of the 

matrix so this is very reliable. 



Non-negative Least Squares (Y. Wang, 2007, 2010)

Do a second order Taylor expansion around current guess p0

LL(p) = LL{p0 )+ gT(p-p0) + (p-p0)
TH(p-p0)/2

As in the primal dual method, all first and second derivatives 

are analytic and easily computed by simple linear algebra operations

using L and p.   Problem can be transformed easily to a non-negative 

least squares form

minimize  ||Ap-b||2

p ≥ 𝟎

for which there are very fast algorithms that converge in a finite 

number of steps.  Often there are fewer total floating point operations

Than in the primal dual method  and the final zero values in p are 

exact. May have to iterate once or twice on expanding in Taylor series 

step).   This is very well suited to bootstrapping – each new replicate 

can often be solved in times <0.1 sec for 1000 subjects, 100 supports

points.



EBE’s as support points may not be good enough (Leary, PAGE 2007)



EBEs

NP-NONMEM

NPML (after NP-NONMEM)

NPEM (after NP-NONMEM)

SNP

N
50 100 200 300 400

T1-distance

ETA-shrinkage ~ 31%; PK oral (from Antic, et al  PAGE2009, abs. 1458) 

NP-NONMEM is not as good as the other NP methods

EBEs seem not consistent!
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NPEM

(after NP-NONMEM)

EBEs

NPML

(after NP-NONMEM)

SNP

ETA-shrinkage > 40%; PK/PD (from Antic, et al  PAGE2009, abs. 1458) 

EBEs NEVER detect the non-responder subpopulation

NP-NONMEM and NPML poorly detected the subpopulation

Only NPEM and SNP appear to detect the non-responder sub-population
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Savic, Karlsson ,Extended Grid Method (AAPS Journal, V. 11, No. 3, 2009)



Lessons learned

Parametric EBE’s are not good enough as a grid when 

shrinkage  is large, but parametric solution is usually 

a good way to import residual error parameters and fixed

effect values in covariate models

Better NP solutions require additional grid points

Directional derivative optimal design method works well

in finding and filtering prospective new grid points 

Modern optimization methods  (primal dual, sequential 

quadratic programming) make probability optimization 

very fast – rate limiting step is often evaluation of model 

on each grid point.



Multiple Model Control

• Discrete form of NP distribution is a natural fit for multiple model control in 

clinical dosing applications –e.g. BestDose software from LAPK.  Rather 

than controlling a single profile based on, for example, parametric 

population parameter means or in the adaptive case, the MAP values of the 

parameters,  the control is applied  to all Npoint models from the population 

and some stochastic criterion is optimized – for example, the probability of 

hitting a target interval:

M. Phillippe, M. Neely, Y. Bertrand, N. Bleysac, and S. Goutelle,  A 

Nonparametric Method to Optimize Initial  Drug Dosing and Attainment of a

Target  Exposure Interval: Concepts and Application Concepts

and Application to Busulfan in Pediatrics,  Clinical Pharmacokinetics, 

August 2016 (See the LAPK Website for further details on control theory 

applications with NP models)

• Similar idea can be adapted to diagnostics – replace MAP-based 

diagnostics with their empirical Bayesian distribution analogs – M.Lavielle

and B. Ribba, Enhanced Method for Diagnosing Pharmacometric Models:  

Random Sampling from Conditional Distributions, Pharm. Res. ,August 2016



Historical objections to NP methods

• Speed – certainly NPML and NPEM were slower than contemporary 

parametric algorithms.  This is emphatically no longer true – if special 

purpose optimization algorithms are used and/or the NP computation is 

piggybacked on top of a parametric optimization,  NP phase is often much 

faster than the underlying parametric  phase.

• Requirement to know residual error function in advance 

Initial parametric run can be done to do this as in NOPD, Phoenix     

NLME- Residual error parameters (SIGMAs) can be estimated within NP

(although only Pmetrics NPAG does this right now) by optimizing residual

error function parameters on grid or simple profiling/

• Lack of standard error/uncertainty distribution capability –

Standard errors and uncertainties of any functional of the population

distribution (as well as individual estimates) can be obtained by bootstrap,

which is much faster in the NP case than the parametric case.

• Lack of covariate optimization – can be handled either by mporting from

iniital parametric run or by semi-parametric optimization .

• Discrete form of results



Advantages of  Modern NP methods

• Speed – certainly NPML and NPEM were slower than contemporary 

parametric algorithms.  This is emphatically no longer true – if special 

purpose optimization algorithms are used and/or the NP computation is 

piggybacked on top of a parametric optimization,  NP is usually faster 

than the parametric  ‘accurate likelihood’ methods.

• Likelihood evaluation – no approximations – for any given grid and 

probability vector, the likelihood is exact up to accuracy of underlying 

model evaluation at a single point.  At grid optimization, likelihood always

improves  - much easier to evaluate convergence than accurate likelihood

parametric methods.

• Reliability – easily the most reliable optimization among all commonly 

used methods – no numerical derivatives, resistant to local minima and 

saddle point termination

• Consistency – bias goes to zero as number of subjects increases, even 

for sparse data.

• Avoids model mis-specification at the random effect distribution level



Bohning PD example – count data



NPOD solution 



Yong Wang comparison of speeds on  simple Nsub=602 1-ETA case



Future work

• Implement Non-negative least squares probability optimizer

• Implement  NPOD or at least an improved pattern search method

for grid expansion

• Implement  fast bootstrap with NNLS

• Implement semi-parametric version 

• Implement NP estimation within a PBPK  framework

• Implement NP specific diagnostics



Conclusions

• NP estimation methods have entered the mainstream of POP PK/PD 

estimation methods – fast, accurate versions now widely available 

(NONMEM, Phoenix NLME, LAPK Pmetrics)

• Most commonly run after an initial parametric method, but can be 

run standalone

• Modern NP methods are very fast and reliable (often the fastest and 

most reliable of all current methods,  with no likelihood 

approximations, no normality assumptions, no numerical 

derivatives, and very fast special purpose optimization algorithms )

• Grids based on just parametric EBE’s are inferior to extended or 

iterated grids, particularly for sparse data, high-shrinkage cases

• Bootstrapping is particularly well suited to NP methods – re-solving 

a replicate just requires rerunning the probability computation with 

no new model evaluations

• NP methods naturally lead to ‘multiple model’ dose optimization and 

diagnostics – e.g. LAPK BestDose software.

• Need user feedback!


