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Goals of Eresentation - answer

What does a non-parametric population pk/pd method do
that | can’t do with a parametric method?

What does a NP estimate look like?

Where can | get access to an NP estimation method,
and how do the commonly available ones differ?

What are the advantages and disadvantages of NP
estimation?

What’s new in the field?

What still needs to be done?



Focus of non-parametric methods is on random effects
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Some estimation aEEroaches for the non-normal case

Mixture distributions ($MIX in NM, mixture of normals)
Non-parametric maximum likelihood
Non-parametric Bayesian (Dirichlet stick breaking priors)
Smooth non-parametric (e.g., polynomial times normal)
Semi-parametric maximum likelihood

(NP for random effects,

some parametric components as

In residual error function or fixed
effects in covariate models)



A brief historx of likelihood-based NP aggroaches

1983 — B. Lindsay - maximum likelihood non- parametric estimator is a
discrete distribution with at most Nsub support points

1986 — A. Mallet — NPML using vertex direction method; established
connection to optimal design criterion and use of directional derivative

1992 — A. Schumitzky — NPEM - EM algorithm on a single
large fixed grid of support points

1998 — present , Laboratory of Applied Pharmacokinetics— NPAG,

NPOD with primal dual probability optimization and mobile support

points resulting in greatly increased speed and accuracy relative to NPEM, as
well as complementary multiple model dosage program (currently called
Pmetrics and BestDose — NPAG variant is also in Phoenix NLME)

2006 — present - NONMEM NONP method based on using EBE’s from
a prior parametric method run as support points, EM for probability
optimization, and residual error and covariate model fixed effects from
parametric. Extended by M. Karlsson’s group with ‘extended grid’
methodology, now available in latest 2017 NONMEM release.



Some recent Ph.D. theses

X. Wang, 2015, U. of Auckland, “Mixture Models for
Multivariate Observations”

P. Baveral, 2011, Uppsala, “Development and Evaluation of
Nnonparametric Mixed Effects Models

J. Antic, 2009, Université Paul Sabatier — Toulouse,
“Nonparametric methods for population PK and/or PD”

Y. Baek, 2006, Univ. of Washington, “An Interior Point
Approach to Constrained Nonparametric Mixture Models”



Quick review of ML estimation Erogerties

Consistent (true in parametric and non-parametric case)
(in parametric case, parameters converge to true values
as amount of data becomes large; in NP cumulative
distribution function converges to true cumulative
distribution function).

Asymptotically most efficient estimator in parametric case,
with asymptotically normal parameter estimates. Leads
to Fisher information based estimates of parameter
uncertainty. N/A in NP case, so some other methodology
such as bootstrapping is necessary.



From Leary et al, PAGE 2002

Statistical efficiencies of NPAG and P-EM are
nearly identical and much higher than IT2B
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Consistency of estimators of Gy
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Asymptotic convergence rate of NPAG is same as parametric EM

1I/NT% vs. 1/NI2 for NPAG and P-EM
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From Leary et al, PAGE2004

Approximate likelihoods can
destroy statistical efficiency




FOCE does better, but still has
<40% efficiency relative to ML
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Results from 2004-2005 inter-method blind comparison
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Classification of methods based on
their sum of ranks for bias and RMSE
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Non-parametric log likelihood LL(f(ETA)) is concave

Nzub

LL(f) = Z lng{j |_isub(res|ETA) f(ETA)dETA)

isub=1
for fi, f> probability densities,

f=(1-a)fi +af,,0 = a = 1isa probability density and

LL(f) = (1 — a) LL{f}) + a(LL(f2))

If f is discrete on a grid of Npoint support points

Nzub Npoint

LL{f) = Z log( Z L(isub, ETA(jpoint)) = p(jpoint)

tzub=1 jpoint=1



Theorem — NPML estimate is discrete with at most Nsub points
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Two parts to maximizing the NP likelihood

1. Find optimal grid G={ETA(jpoint), jpoint=1,Npoint}
2. Find optimal probabilities p(jpoint), jpoint=1,Npoint

Current and historical methods differ by how they approach
these two parts and whether they iterate over both parts

NPML iterates over both 1 and 2, but does only an approximate
job of getting optimal probabilities at each iteration, and only changes
adds one new grid point per iteration

NPEM starts with a large fixed grid, does only 1 iteration but with
accurate probabilities found by EM on the intial grid

NONP starts with a relatively small initial grid of ‘good’ points,

does one accurate probability optimization using EM, but like NPEM does
not change the grid. 2017 NONMEM?7.4 now supports Uppsala ‘extended
grid’ methodology

NPAG and NPOD iterate over relatively small grids, use a fast quadratically convergent
primal dual probability optimization , change out multiple grid points per iteration,
and do at least some form of grid point position selection



Imgroving the current grid with a new candidate Eoint ETA

Let {G={ETA()}, p} be any grid and the associated optimized
probabilities, and L(isub,jpoint) the corresponding likelihood matrix

Then a better grid can be found by adding any point ETA such
that DD(ETANEW)>0, where DD(eta) is the directional derivative

defined by

DD(ETA) = w’*Likelihood(ETA))
where w’(isub) =1./(L*p)
The coeficients vector w is the ‘dual solution’
Suggests maximizing DD(ETA) over ETA to find new grid points

(NPOD idea) or at least using w to screen new candidate grid points —
(NPAG) - this essentially solves the ‘curse of dimensionality’ problem



Probability optimization methods

EM -used in NPEM, NONP

Reliable, but at best linearly convergent. Very simple to

implement (5lines of MATLAB). Convergence rate slows down as
number of grid points increases and grid point spacing gets smaller.
Fair restart properties if you add additional points to grid following
an initial solution. Requires interior point start.

Primal-Dual — used in Pmetrics NPAG, Phoenix NLME NPAG
Reliable, quadratically convergent. Much faster than

EM. Very insensitive to grid spacing. Fair restart capabilities on
new grid points. Requires interior point start.

Non-Negative Least Squares —”New” method proposed by

Y. Wang (2007, 2010). Finite step convergence on each

iteration. Insensitive to grid spacing and often faster than

primal-dual. Good restart capabilities —does not need an interior point
start so you can start directly from a previous optimal solution on

the old grid.



EM Method

EM method works by updating p with empirical Bayesian
distributions (EBDs) induced by p -

PEBD(isub,jpoint)~ L(isub,jpoint)*p(jpoint)

pnew(jpoint) = mean_isub pEBD(isub,jpoint)

NP log likelihood is guaranteed to increase on each iteration by
Jensen’s inequality. All likelihoods at each stage are exact (up to

precision of model evaluation - no numerical derivatives or matrix
factorizations anywhere that can fail.



Primal Dual Interior Point Method (Burke, Baek, 2001)

Works by simultaneously solving the primal problems
Maximize sum (log(L*p)), p=0, sum(p(jpoint))=1

And the dual
maximize sum (w(isub))
L™*w<ones(npoint,1)

Inequalities are replaced by log barrier functions with a coefficient
That is gradually reduced to zero. A Newton method is used to
Solve the resulting Kuhn-Tucker equations at each coefficient value.
The required first and second derivatives with respect to p and w
These can be evaluated analytically and only involve the already
computed L(isub,jpoint) values. There is one Cholesky factorization,
but the PD method carefully controls the condition number of the
matrix so this is very reliable.



Non-negative Least Squares (Y. Wang, 2007, 2010)

Do a second order Taylor expansion around current guess p,

LL(p) = LL{po )+ g"(pP-Po) + (P-Po) "H(P-P)/2

As in the primal dual method, all first and second derivatives

are analytic and easily computed by simple linear algebra operations
using L and p. Problem can be transformed easily to a non-negative
least squares form

minimize ||Ap-b||?
P=0

for which there are very fast algorithms that converge in a finite
number of steps. Often there are fewer total floating point operations
Than in the primal dual method and the final zero values in p are
exact. May have to iterate once or twice on expanding in Taylor series
step). This is very well suited to bootstrapping — each new replicate
can often be solved in times <0.1 sec for 1000 subjects, 100 supports
points.



EBE’s as support points may not be good enough (Leary, PAGE 2007)
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ETA-shrinkage ~ 31%; PK oral (from Antic, et al PAGE2009, abs. 1458)
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ETA-shrinkage > 40%; PK/PD (from Antic, et al PAGE2009, abs. 1458)
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Savic, Karlsson ,Extended Grid Method (AAPS Journal, V. 11, No. 3, 2009)
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Fig. 6. Sparse pediatric example: 90% prediction intervals (blue line) and a median (black line) for each of the five parameter distributions
created based on 100 estimated nonparametric distributions using extended grid method (1,000 additional support points) and its comparison
with the true distribution (gray line) and default nonparametric distribution estimated with the original real data (red line)
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Lessons learned

Parametric EBE’s are not good enough as a grid when
shrinkage is large, but parametric solution is usually

a good way to import residual error parameters and fixed
effect values in covariate models

Better NP solutions require additional grid points

Directional derivative optimal design method works well
In finding and filtering prospective new grid points

Modern optimization methods (primal dual, sequential
guadratic programming) make probability optimization
very fast —rate limiting step is often evaluation of model
on each grid point.



Multiple Model Control

Discrete form of NP distribution is a natural fit for multiple model control in
clinical dosing applications —e.g. BestDose software from LAPK. Rather
than controlling a single profile based on, for example, parametric
population parameter means or in the adaptive case, the MAP values of the
parameters, the control is applied to all Npoint models from the population
and some stochastic criterion is optimized — for example, the probability of

hitting a target interval:

M. Phillippe, M. Neely, Y. Bertrand, N. Bleysac, and S. Goutelle, A
Nonparametric Method to Optimize Initial Drug Dosing and Attainment of a
Target Exposure Interval: Concepts and Application Concepts

and Application to Busulfan in Pediatrics, Clinical Pharmacokinetics,

August 2016 (See the LAPK Website for further details on control theory
applications with NP models)

Similar idea can be adapted to diagnostics — replace MAP-based

diagnostics with their empirical Bayesian distribution analogs — M.Lavielle
and B. Ribba, Enhanced Method for Diagnhosing Pharmacometric Models:
Random Sampling from Conditional Distributions, Pharm. Res. ,August 2016



Historical objections to NP methods

Speed — certainly NPML and NPEM were slower than contemporary
parametric algorithms. This is emphatically no longer true — if special
purpose optimization algorithms are used and/or the NP computation is
piggybacked on top of a parametric optimization, NP phase is often much
faster than the underlying parametric phase.

Requirement to know residual error function in advance

Initial parametric run can be done to do this as in NOPD, Phoenix

NLME- Residual error parameters (SIGMAs) can be estimated within NP
(although only Pmetrics NPAG does this right now) by optimizing residual
error function parameters on grid or simple profiling/

Lack of standard error/uncertainty distribution capability —

Standard errors and uncertainties of any functional of the population
distribution (as well as individual estimates) can be obtained by bootstrap,
which is much faster in the NP case than the parametric case.

Lack of covariate optimization — can be handled either by mporting from
Iniital parametric run or by semi-parametric optimization .

Discrete form of results



Advantages of Modern NP methods

« Speed - certainly NPML and NPEM were slower than contemporary
parametric algorithms. This is emphatically no longer true — if special
purpose optimization algorithms are used and/or the NP computation is
piggybacked on top of a parametric optimization, NP is usually faster
than the parametric ‘accurate likelihood’ methods.

» Likelihood evaluation — no approximations — for any given grid and
probability vector, the likelihood is exact up to accuracy of underlying
model evaluation at a single point. At grid optimization, likelihood always

Improves - much easier to evaluate convergence than accurate likelihood
parametric methods.

« Reliability — easily the most reliable optimization among all commonly
used methods — no numerical derivatives, resistant to local minima and
saddle point termination

« Consistency — bias goes to zero as number of subjects increases, even
for sparse data.

« Avoids model mis-specification at the random effect distribution level



Bohning PD example — count data

Observed vs. NP-fitted frequencies
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NPOD solution

directional derivative
+ optimal grid after iter 1




Yong Wang comparison of speeds on simple Nsub=602 1-ETA case
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Table 2. Computation of the NPMLE of the mixing distribution for
the Thailand data set
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Algorithm s 1(G)—1(Gs) suppi{d(0,Gs)} Time (s)
VDM 70359  6.76 x 1073 1.00 x 10~2 610.61
VEM 14064  6.14x 1073 9.62 x 103 434.06
EM 5337  1.85x 1077 9.95x 10~/ 5.58
ISDM 146  2.93x 1077 5.24 x 10~ 1.46
CN10 68 5.17x 1078 6.76 x 10~/ 1.35
CNI1 56 6.34x1078 9.90 x 10~/ 0.84
CNM 20  1.18x 1077 2.74 % 10~ 0.27

® Sign In




Future work

 Implement Non-negative least squares probability optimizer

 Implement NPOD or at least an improved pattern search method
for grid expansion

 Implement fast bootstrap with NNLS

* Implement semi-parametric version

 Implement NP estimation within a PBPK framework

 Implement NP specific diagnostics



Conclusions

NP estimation methods have entered the mainstream of POP PK/PD
estimation methods — fast, accurate versions now widely available
(NONMEM, Phoenix NLME, LAPK Pmetrics)

« Most commonly run after an initial parametric method, but can be
run standalone

« Modern NP methods are very fast and reliable (often the fastest and
most reliable of all current methods, with no likelihood
approximations, no normality assumptions, no numerical
derivatives, and very fast special purpose optimization algorithms)

» Grids based on just parametric EBE’s are inferior to extended or
iterated grids, particularly for sparse data, high-shrinkage cases

 Bootstrapping is particularly well suited to NP methods — re-solving
a replicate just requires rerunning the probability computation with
no new model evaluations

NP methods naturally lead to ‘multiple model’ dose optimization and
diagnostics — e.g. LAPK BestDose software.

e Need user feedback!



