# MODELING OF CARDIAC BIOMARKERS IN BREAST CANCER PATIENTS TREATED WITH ANTHRACYCLINE AND TRASTUZUMAB REGIMENS

### AHM de Vries Schultink<sup>1</sup>, AH Boekhout<sup>1</sup>, JGC van Hasselt<sup>2</sup>, JHM Schellens<sup>1,3</sup>, ADR Huitema<sup>1,4</sup>.

<sup>1</sup>Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam <sup>2</sup>Leiden University, Leiden, the Netherlands <sup>3</sup>Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, the Netherlands

<sup>4</sup>University Medical Center Utrecht, Utrecht, the Netherlands

## Major findings

Sensitivity for left ventricular ejection fraction (LVEF) decline under trastuzumab treatment is explained by three cardiac biomarkers:

- 1. Maximum troponin T concentrations during anthracycline treatment
- 2. Baseline NT-proBNP concentrations
- 3. Baseline LVEF measurements

### Background

- Trastuzumab is used to treat HER2-recepor positive breast cancer.
- Trastuzumab treatment is associated with cardiotoxicity, manifesting in a decline of LVEF values: the fraction of blood that is pumped out of the heart.

### Results

 Sensitivity for LVEF decline (EC<sub>50</sub> parameter) was significantly affected by the maximum troponin T concentration (CMAX<sub>trop</sub>) during anthracycline treatment, BNP<sub>0</sub> concentration and LVEF<sub>0</sub> value:

$$EC_{50} = TVEC_{50} \cdot \left(\frac{CMAX_{trop}}{14}\right)^{-1.04} \cdot \left(\frac{BNP_0}{62.1}\right)^{-0.418} \cdot \left(\frac{LVEF_0}{0.609}\right)^{7.54}$$

#### Table 1: EC<sub>50</sub> : Sensitivity for different scenarios

| Scenario                        | EC <sub>50</sub> (mg/L effect conc.) | Sensitivity |
|---------------------------------|--------------------------------------|-------------|
| Population estimate             | 1700                                 | -           |
| CMAX <sub>trop</sub> of 20 ng/L | 1173                                 | Increased   |
| BNP <sub>0</sub> of 150 pmol/L  | 1175                                 | Increased   |
| LVEF <sub>0</sub> of 0.55       | 788                                  | Increased   |



- Patients are often pretreated with anthracyclines, also known to induce cardiotoxicity, leading to myocyte damage which translates into an increase in troponin T concentrations.
- LVEF values are generally used to detect drug-induced cardiotoxicity, however troponin T and NT-proBNP concentrations have also been suggested to allow early detection of cardiotoxicity.

### Objective

In this analysis we aim to quantify the kinetics and exposure-response relationship of troponin T, NT-proBNP and LVEF measurements, in patients receiving anthracycline and trastuzumab treatment.

### Data

Data was obtained from a clinical trial investigating the effect of candesartan on trastuzumab induced cardiotoxicity, n=209 [1].

#### Table 2: IIV on EC<sub>50</sub>

| Scenario                                 | % IIV (RSE (%)) | dIIV  |
|------------------------------------------|-----------------|-------|
| No biomarker effects                     | 88.4 (9)        | -     |
| CMAX <sub>trop</sub>                     | 54.5 (15)       | 33.9% |
| CMAX <sub>trop</sub> + LVEF <sub>0</sub> | 25.5 (89)       | 29.0% |
| $CMAX_{trop} + LVEF_0 + BNP_0$           | 21 (179)        | 4.5%  |

 The slope effect of anthracyclines on the K<sub>in</sub> rate of troponin T was 2 times higher for doxorubicin compared to epirubicin.

### VPCs for LVEF and troponin T



Available data included:

- Repeated measurements of troponin T, NT-proBNP and LVEF
- Individual dosing records of anthracycline and trastuzumab

### Methods

### **Pharmacokinetics**

- Mean PK of trastuzumab was described using a published PK model. [3]
- A K-PD approach was used for anthracyclines (doxorubicin & epirubicin) [4].

### **Pharmacodynamics:**

- Troponin T was best described by a turn-over model to associate anthracycline exposure to troponin T concentrations
- The K<sub>in</sub> rate was increased with increasing anthracycline concentration



- An effect-compartment model was used to associate trastuzumab exposure to LVEF measurements.
- The effect-compartment resembles the heart damage and the damage is

Comparisons were performed between the 5<sup>th</sup>, 95<sup>th</sup> (dashed lines), and 50<sup>th</sup> (solid line) percentiles obtained from 500 simulations and the observed LVEF values and troponin T concentrations (open circles).



CWRES vs. time and CWRES vs. population predictions for the model describing LVEF values over time.

### Conclusions

• The CMAX<sub>trop</sub>, explained 34% of variability in sensitivity (EC<sub>50</sub>) to LVEF declined followed by LVEE (20%) and RNP (4.5%)

modeled to affect the baseline value of LVEF (LVEF<sub>0</sub>) with an  $E_{max}$  model [2].



 For NT-proBNP only baseline values before start trastuzumab (BNP<sub>0</sub>) were included by estimation of the observed concentrations.

#### Covariates

The following variables were tested as covariates:

- Radiotherapy: previous treatment, frequency and laterality
- Hypertension: diagnosis and state (active/dormant)
- Randomization to candesartan

decline, followed by LVEF<sub>0</sub> (29%) and BNP<sub>0</sub> (4.5%).

- The slope effect at which troponin T is increased by anthracycline treatment, was a 2-fold higher for doxorubicin compared to epirubicin.
- Evaluated covariates did not significantly influence the dynamics of cardiotoxicity represented in this model.
- The CMAX<sub>trop</sub> during anthracycline treatment and baseline values of NTproBNP and LVEF can support prediction of patient sensitivity to LVEF decline during trastuzumab treatment.

#### References

[1] Boekhout AH, Gietema JA, Miljkovic Kerklaan B, et al. Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer. JAMA Oncology 2016 Aug 1;2(8):1030-7.
[2] Hasselt JGC, Boekhout AH, Beijnen, et al. Population pharmacokinetic-pharmacodynamic analysis of trastuzumab-associated cardiotoxicity. Clin Pharmacol Ther. 2011 90 (1): 126-132
[3] Bruno R, Washington CB, Lu J-F, et al. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother. Pharmacol. 2005;56:361-9
[4] Jacqmin P, Snoeck E, van Schaick EA, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007 Feb;34(1):57-85