

mAb priors

Improving priors for human mAb linear PK parameters by using half-lives from pre-clinical studies Martin Fink, Philip J. Lowe, Vittal Shivva

PAGE, Lisboa, 09-June-2016

Improving priors for human mAb linear PK parameters by using half-lives from pre-clinical studies

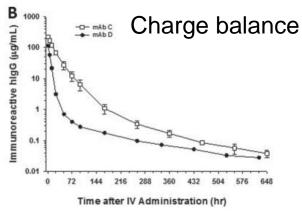
- Goal: Priors for linear part of mAb PK parameters for
 - First-in-man studies
 - Linear part of TMDD models to provide more robust estimation of TMDD
- But, large PK inter-drug variability (2-fold difference in half-lives)
- One can obtain improved priors by pooling information from different mAbs (\$LEVEL, Covariates,...) and using half-lives from non-humanprimates (NHP) for predicting human PK parameters:

$$CL = CL^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1} \qquad V_{t} = V_{t}^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1}$$

 t_{half} ... Extrapolated half-life in days from NHP (for 70 kg individual)

U NOVARTIS

mAb PK: Properties influencing mAb PK


PK differences also due to target-independent properties

- Binding of Fab and Fc part
 - Fab target binding => TMDD
 - FcRn binding => Recycling (reduced elimination)

- Biochemical properties
 - Charge balance
 - Glycosylation

B Motavizumab 3 mg/kg Mota-YTE 3 mg/kg Torregue Mota-YTE 3 mg/kg FcRn binding

Robbie et al., Antimicrob Agens Chemother 2013

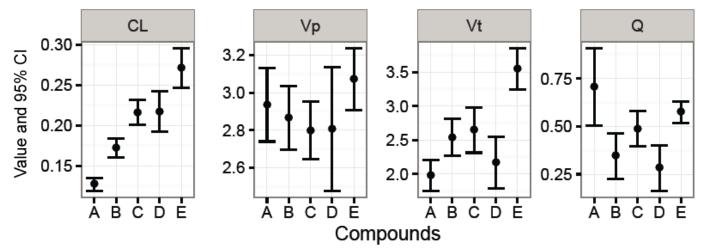
Datta-Mannan et al., mAbs 2015

\rm 🕐 NOVARTIS

mAb PK: Focus on linear 2-cmt PK

Fulfilled for total PK in saturated system with soluble target

- Linear 2-cmt PK
 - Total mAb concentrations (free + bound)
 - Soluble target
 - Saturated system (molar excess)
- Note: "linear part" includes saturated non-linear targetmediated elimination


$$A_p' = A_t \frac{Q}{V_t} - A_p \frac{Q}{V_p} - A_p \frac{CL}{V_p}$$
$$A_t' = -A_t \frac{Q}{V_t} + A_p \frac{Q}{V_p}$$

A ... Amountp ... PlasmaV ... Volumet ... TissueQ ... "Intercomp. clearance"CL ... "Clearance"

Allometric scaling by weight (exponents 1, 0.75)

Separate fits: Differences in CL – consistency in Vp

Substantial differences in CL & Vt

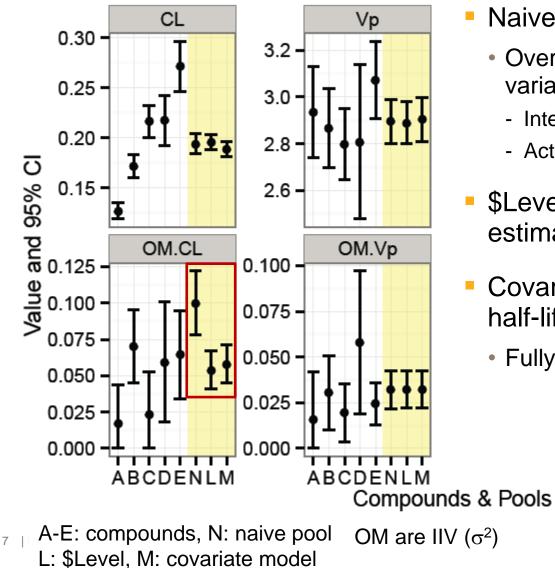
- Correlation between CL and Vt
- Very consistent Vp (ca. 3L = plasma-volume)
 - >3L for membrane-bound mAbs
 - Rapid-binding (specific and non-specific)
 - Discussions about faster distribution into tissue?¹ Very unlikely.

¹ Fronton et al., JPKPD, 41:87-107 (2014)

Pooling: 3 approaches to obtain "prior" for next mAb Non-linear mixed-effects methodology

- Naive pool¹
 - This assumes that all THETAs and OMEGAs are shared between all mAbs, i.e., it assumes no differences between mAbs
- \$LEVEL
 - New NONMEM function to allows additional hierarchical levels
 - Accounts for inter-drug-variation (IDV)
- Covariate(s)
 - Describing functional relationships between mAb parameters

$$CL = CL^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1} \qquad V_{t} = V_{t}^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1}$$

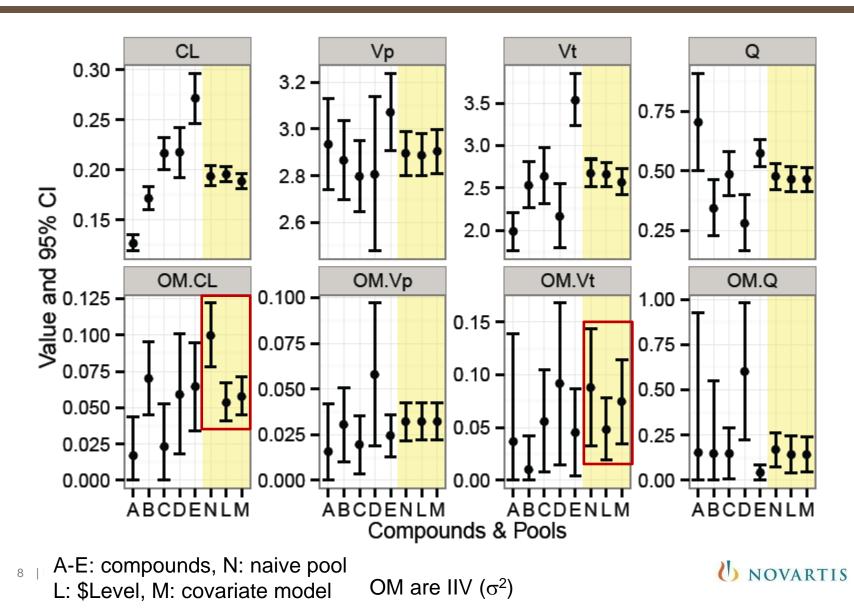

*t*_{half} ... Extrapolated half-life in days from NHP (for 70 kg individual)

¹ Davda et al., mAbs 2014.

U NOVARTIS

Pooling: Parameter estimates

Differences in CL; increased IIV of naive pool; unbiased IIV in \$Level


Naive pool

- Overestimates inter-individual variability (IIV) by including both:
 - Inter-drug-variation (IDV)
 - Actual IIV (within compounds)
- \$Level pool provides unbiased estimate of IIVs
- Covariate model using NHP half-life
 - Fully explains IDV in CL

- Median EBE/compound
- Predictions for compounds

Pooling: Parameter estimates

Differences in CL; increased IIV of naive pool; unbiased IIV in \$Level

Pooling: Summary of results

\$Level provides robust estimates – Covariate model suitable for prediction

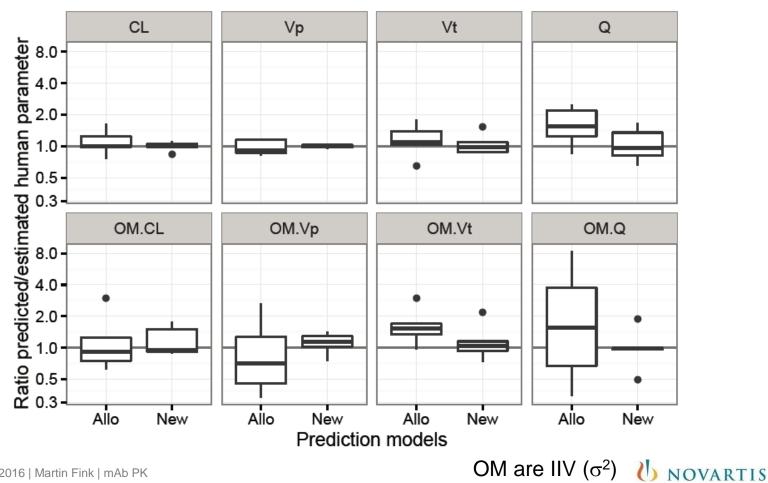
- \$LEVEL provides estimates for IDV
 - CL 23%CV, Vt 12%CV, Q 10%CV
 - But cannot be used for prediction
- Covariate model using NHP half-life
 - Fully explains IDV in CL only partially for Vt
 - Can be used for predicting mAb parameters
- Combine the two
 - Use unbiased estimates of IIV from \$LEVEL
 - Use the adjustment of CL and Vt based on NHP thalf

Parameters for mAb linear PK

With full covariance matrix

	THETA	IIV (σ)	IDV (σ)	ETA-Shrinkage
CL ⁰ (L/d)	0.189 (21d t _{half})	0.23	0.23	6%
Vp (L)	2.91	0.16	-	10%
Vt ⁰ (L)	2.57 (21d t _{half})	0.24	0.12	19%
Q (L/d)	0.452	0.38	0.10	28%

$$CL = CL^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1} \quad V_{t} = V_{t}^{0} \left(\frac{t_{half}}{21 \text{ days}}\right)^{-1}$$


 t_{half} : Extrapolated half-life in days from NHP (to 70 kg)

Correlation	OM.CL(σ)	OM.Vp(σ)	OM.Vt(σ)	ΟΜ.Q(σ)
OM.CL(σ)	0.233			
OM.Vp(σ)	0.379	0.158		
OM.Vt(σ)	0.155	0.723	0.237	
OM.Q(σ)	0.004	0.566	0.349	0.382

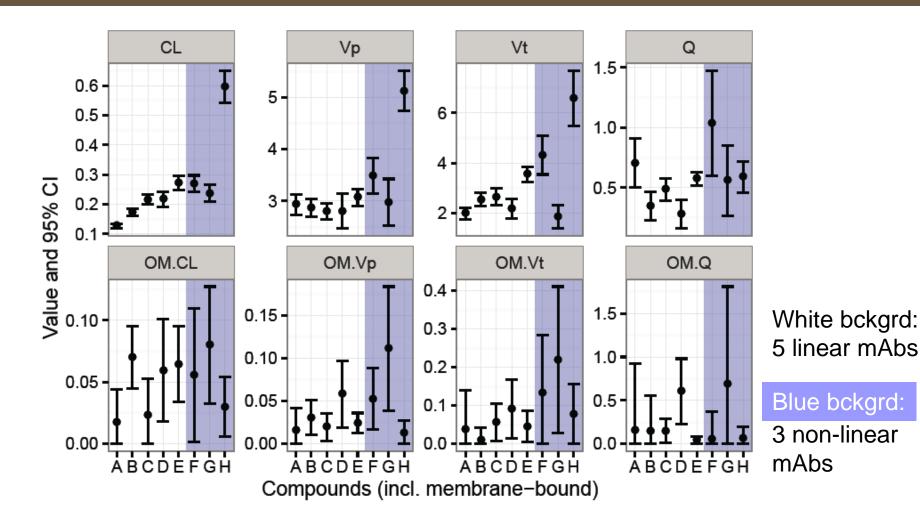
Prediction: Priors vs. pure allometric scaling Internal validation favors the new approach

Relative error predicted/estimated parameter for the two methods (1 data point per compound A-E)

Conclusions & Next steps

- Using the terminal half-life estimates from NHP data one can account for most of the inter-drug variability in human and thus provide noninflated priors for the linear PK parameters of mAbs
 - This approach uses unbiased priors for IIV (compared to the naive pool)
 - It also showed slightly better performance than predictions from the naive pool or was pure allometric scaling

 Next, we want to use the priors derived here to non-linear mAbs to obtain more robust TMDD parameters



Thank you!

Questions?

Non-linear mAbs in human

Rapid membrane bound – or just dose-dependent PK parameters

OM are IIV (σ²) 🔥 NOVARTIS