
This scheme has been incorporated in the Phoenix Modeling  

Language (PML) as a statement. The fragments below illustrate a 

first-order model with time-lag and a corresponding transit 

compartment model: 

 

 

 

 

In both models, the lag time and mean transit time are 

represented by mtt. In the transit model there is an additional 

parameter n, where maxn > n ≥ 0, representing the number of 

transitions minus one. (maxn can be specified by an optional 

argument, default 50.) n functions as a sigmoidicity parameter, 

analogous to the Hill parameter in a sigmoid Emax model. A 

simple example is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The advantage of the interpolated transit model is that it can 

handle arbitrary dosing sequences, including steady-state. A 

disadvantage is that the size of n is limited, because it effectively 

creates a vector differential equation of size maxn, creating a 

performance cost. 
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Objective 

Savic et al. [1] give a closed-form computation to model 

absorptive delay through multiple transit compartments, where 

the number of compartments is a parameter to be estimated. It 

works for single delta-function inputs sufficiently separated in 

time. It is desirable to model such absorption in a way that easily 

handles arbitrary dosing sequences and steady-state 

determination. 

Methods 

It is typical to model absorption delay by a simple time lag, but a 

useful alternative is to model the delay as a sequence of transit 

compartments terminating in an absorption compartment. 

Following Savic et al. [1], a closed form expression for the flow 

rate into the absorption compartment is given by: 

𝑑𝐴𝑎

𝑑𝑡
= 𝐷𝑜𝑠𝑒 𝐹 𝑘𝑡𝑟  

𝑘𝑡𝑟 𝑡 𝑛

Γ 𝑛+1
 𝑒−𝑘𝑡𝑟 𝑡   (1) 

Where 𝑘𝑡𝑟 is given in terms of the number of transit stages n, 

and the mean transit time mtt: 

           𝑘𝑡𝑟 =
𝑛+1

𝑚𝑡𝑡
        (2) 

This formulation has the advantage that n can vary between 

individuals, and it need not be an integer. However, it has a 

difficulty that it cannot be used easily with multiple doses unless 

they are separated by a washout interval. An alternative is to 

use a sequence of compartments modeled with differential 

equations, and deliver the dose to an upstream compartment 

chosen by n. If n is not an integer, an approximation is to linearly 

interpolate between the final two transit compartments, as in this 

diagram, where 𝐴𝑥 is an extra compartment: 

 

 

 

and where 𝑓 = 𝑛 − 𝑛 , and doses are delivered to compartment 

𝐴 𝑛 . However, it is not particularly accurate for non-integer n 

because it is piecewise linear w.r.t. n and equation (1) is a 

smooth curve. An alternative is to perform logarithmic 

interpolation as in this diagram: 

 

 

 

 

Logarithmic interpolation has smaller errors than linear 

interpolation. Furthermore, the errors are proportional, not a 

function of time, and they can be exactly corrected by the 

following function: 

𝐶 𝑛 =
Γ 𝑛 + 1

Γ 𝑛 + 1
𝑛 + 1 𝑓 

whose graph is as follows: 

 

 

 

 

 

 

 

 

Modeling Transit Compartments with Multiple Doses in 

Phoenix NLME 

Michael R. Dunlavey, Robert H. Leary 

Certara/Pharsight® Corporation 


