

Model-based characterization of neutrophil dynamics in children receiving busulfan or treosulfan for haematopoietic stem cell transplant conditioning

Belén P. Solans, Robert Chiesa, Zinnia P Parra-Guillén, Paul Veys, Iñaki F. Trocóniz, Joseph F. Standing

Pharmacometrics and Systems Pharmacology Department of Pharmaceutical Technology and Chemistry School of Pharmacy and Nutrition www.unav.edu/psp

Outline

- Severely immunocompromised and liable to infections

 Main cause of transplant-related death
- Different depending on diagnosis, age, clinical conditions, donor type and source of cells

Debate surrounding the relative methods of Busulfan (Bu) and Treosulfan (Treo)

Objectives

Establish a PKPD model for the treatment and engraftment effects on neutrophil counts comparing busulfan and treosulfan Optimise PK sampling schedules for therapeutic drug monitoring of busulfan

Evaluate the dosing schedules of busulfan and treosulfan with respect to time to HSCT Establish the relationship between neutropenia and overall survival

Patient Population

			Busulfan	Treosulfan
			72 children	54 children
			5.1 – 47.0 Kg 7 months – 18 years	3.8 – 35.8 Kg 4 months – 17 years
	DIAGNOSIS			
	Non-S	olid tumours	30	18
	Non-r	nalignancies	42	36
	TRANSPLANT TYPE Autologous			
			12	1
		Allogeneic	60	53
CONDITIONING GROUPS		G GROUPS		
	Different combinations		8	4

Response data

©UNAV-PSP, 2019, all rights reserved

9

Pharmacokinetics

PMAW – Post-menstrual age in weeks

PKPD Model Development

©UNAV-PSP, 2019, all rights reserved

OVERALL MODEL PERFORMANCE

BUSULFAN

CLINICALLY RELEVANT METRICS

Treosulfan

Time to Recovery

Busulfan

Treosulfan

SYSTEM PARAMETERS

Parameter	Estimate (RSE%)	IIV [CV%]	
Circ0	0.79 (18.91)	75.90	
MTT [h]*	94.8 (12.04)	35.41	
γ*	0.11 (13.93)	77.10	

* After transplant effect

- High IIV
- Multiple factors
 - Not initially at steady state

PKPD Model of Neutropenia in Patients with Myeloma receiving high-dose melphalan for Autologous Stem Cell Transplant

	Structural	Structural model			əl		Bootstrap	
	Estimate	RSE, %	IIV, CV% (% shrinkage)	Estimate	RSE, %	IIV, CV% (% shrinkage)	Estimate median (95% CI)	IIV, CV% median (95% CI)
BASE (K/µL)	5.69	4.5	35.1 (11.5)	5.61	4.7	34.4 (59.6)	5.62 (5.17-6.01)	33.9 (29.4–39.2)
SLOPE (mL/µg)	11.3	4.4	33.3 (12.1)	7.46	7.4	25.1 (18.3)	7.48 (6.67-8.99)	24.2 (19.0-29.4)
MTT (hours)	106	2.4	10.7 (11.5)	97	2.5	6.6 (22.7)	96.7 (92.56–101.00)	6.3 (4.3-7.7)
γ	0.221	2.3	-	0.218	2.3	-	0.218 (0.206-0.230)	-

Cho YK et al. CPT Pharmacometrics Syst Pharmacol. 2018 Nov;7(11):748-758

SYSTEM PARAMETERS

Parameter	Estimate (RSE%)	IIV [CV%]
Circ0	0.79 (18.91)	75.90
MTT [h]*	94.8 (12.04)	35.41
γ*	0.11 (13.93)	77.10

* After transplant effect

TABLE 1

Population pharmacodynamic parameter estimates corresponding to the reference model for neutropenia (Friberg et al., 2002)

	D	Shrinkage (%)	Во	Bootstrap $(n = 500)$		
Parameters	Estimate		Median	2.5–97.5th Percentiles		
$\operatorname{Circ}_{0}(\times 10^{9}/\mathrm{l})$	4.70		4.65	3.9 - 5.4		
MTT (d)	4.81		4.75	3.9-6.0		
θ_{Slope} (ml/ng)	1.49		1.51	0.6 - 3.2		
	4.03		3.96	2.1 - 11.2		
γ	0.14		0.14	0.08 - 0.2		

Mangas-Sanjuan et al. J Pharmacol Exp Ther. 2015 Jul;354(1):55-64

Table 1 Pharmacokinetic and pharmacodynamic parameters for BI 2536

Parameter	Estimate	IPV	η -shrinkage
Pharmacokinetics			
CL (L/h)	69.9 (4.7)	49 (27.9)	3.8
V_1 (L)	69.1 (9.8)	79 (25.3)	12.5
Q_2 (L/h)	48.5 (7.3)	Ne	Na
V ₂ (L)	1,350 (9.7)	45 (27.7)	31.6
Q_3 (L/h)	108 (10.5)	Ne	Na
V ₃ (L)	190 (15.5)	134 (21.8)	6.2
Additive error (ng/mL)	0.410 (36.6)	Na	Na
Proportional error (%)	39.2 (8.7)	Na	Na
Pharmacodynamics			
$Circ_0$ (cells × 10 ⁹ /L)	4.96 (4.0)	421 (15.3)	3.3
MTT (h)	107 (3.8)	22 (46.4)	20.9
Slope (mL/ng)	0.0147 (8.6)	65 (24.3)	19.1
7	0.161 (5.9)	Ne	Na
Additive error (cells $\times 10^{9}/L$)	0.278 (47.8)	Na	Na
Proportional error (%)	21.1 (9.0)	Na	Na

Parameters are listed together with the coefficient of variation [CV(%)] in parenthesis. *CL*, total plasma clearance; *V*₁, volume of distribution in the central compartment; *V*₂ and *V*₃, volume of distribution in the peripheral compartments; *Q*₂ and *Q*₃, Intercompartmental clearances; *Circ*₀, basal ANC; *MTT*, maturation mean transit time; γ , feedback parameter; *IPV*, inter-patient variability expressed as CV (%): *Ne*. not estimated: *Na*. not applicable

Soto E et al. Cancer Chemother Pharmacol. 2010 Sep;66(4):785-95

Summary PKPD Model

First time, to our knowledge, that the HSCT effect is introduced in a neutropenia model in children

- Different value at baseline and at steady state \bullet
- Transplant effect
 - Enhancing Proliferation
 - Enhancing Feedback
 - Decreasing MTT
- Alemtuzumab effect
 - Decreasing MTT
- Drug effect
 - Eliminating cells

Same transplant effect regardless type of transplant

Evaluation of the dosing schedules

Evaluation of the dosing schedules

Evaluation of the dosing schedules

Software used: PopED

*Foraccia, Hooker, Vicini and Ruggeri 2004

©UNAV-PSP, 2019, all rights reserved

Software used: PopED

*Foraccia, Hooker, Vicini and Ruggeri 2004

©UNAV-PSP, 2019, all rights reserved

©UNAV-PSP, 2019, all rights reserved

Conclusions

Conclusions

New dosing schedules are proposed Differences between patients with malignant and non-malignant diseases are found

Useful tool to improve the clinical management of children receiving HSCT

PKPD model developed predicts neutrophil reconstitution trajectories after HSCT

schedules are found to be more informative

VNIVERSIIAS SI

MOCHCHAKKERAN DANKE MANANA SPAS TEI THANK YOU KIITOS GRAZIE TAU 2 ESKERRIK ASKO DANKJE A **MISAOTRA** GRAZZI