Interactive Simulation and Visualization of Drug/Disease Models

Michael Heathman (1), Donald Jennings (1), and Bernett Lee (2) (1) Eli Lilly and Company, Indianapolis, Indiana, USA; (2) Lilly Singapore Center for Drug Discovery, Republic of Singapore

Introduction	Objectives
Drug/disease modeling enables quantitative decision making in the drug development process, through codification of scientific information about disease states, comparators, and new molecular entities. Model-based simulations are a powerful tool to leverage this information, facilitating open discussion with clinicians and other key members of the drug-development team, particularly when coupled with data visualization techniques. Current mechanisms for generating and interpreting these simulations require significant expertise in multiple complex software applications. The ability to answer clinically-relevant questions is further impeded due to the long turnaround times required to program and run these simulations. This makes poor use of modeling resources and limits the total benefit gained from model development.	 To address these problems, we have undertaken the development of an interactive system for model-based simulation and visualization, including the following capabilities: A standardized model-specification language, compatible with mixed effect models developed in common software. An interface which allows user-defined input of model parameters, drug properties, patient characteristics, and study design parameters. A real-time simulation engine, designed to generate virtual patients and/or study data in a parallel fashion on a cluster of networked computers. An interface for visualization of simulation results, calculation of summary statistics, and output of virtual patients for further analysis in other statistical software.
Methods	Simulation Engine
 Model Specification Language Standardized model specification language developed in R, for speed and portability. Model specification file is an annotated R script designed to generate a set of model predictions for a single patient. 	 Simulations distributed by application server using Condor, to run in parallel on 1136 node linux cluster. Results automatically aggregated by application server, patient-level data and mean values from study-level simulations. Aggregated files of virtual patients may be exported or viewed in visualization interface.
given a set of parameters, dosing regimen, observation timepoints, and covariate values. – Header information defines inputs to model function.	Visualization Interface

- Model function returns endpoint predictions for the virtual patient.
- Template library available to assist users with model translation.

Example Model Specification File (Indirect Response Model)

# Author: Mike Heathman	library("MASS")
# Created: June 2010	library("deSolve")
# Data source: Final data transfer, study ABCD	
<pre># Description: Two compartment PK, first-order absorpt</pre>	tion, #Differential Equations for indirect response model
# Type III indirect response model	<pre>model.DE <- function(t,state,parms) {</pre>
# Qualified visual predictive check	<pre>with(as.list(c(state,parms)),{</pre>
# Function: model	dal <ka*al< th=""></ka*al<>
# Theta: KA 1.25 (1/hour)	da2 <- ka*a1 - (cl/v2)*a2 - (q/v2)*a2 + (q/v3)*a3
# Theta: CL 111 (L/hour)	da3 <- (q/v2)*a2 - (q/v3)*a3
# Theta: V2 1410 (L)	da4 <- (kout*e0)*(1+emax*(a2/v2)^hill/((a2/v2)^hill+ec50^hill))-kout*a4
# Theta: V3 1870 (L)	list(c(da1,da2,da3,da4))})
# Theta: Q 167 (L/hour)	}
# Theta: E0 99.7 (pM)	
# Theta: EMAX 0.870 (Fraction)	#model: Function which is called by simulation system
# Theta: EC50 95.0 (ng/mL)	model <- function(theta.omega.sigma.drug.dose.dose.times.
# Theta: HILL 1.00 (Power)	timepoints, age, weight) {
# Theta: KOUT 0.0993 (1/hour)	
# Theta: AGE CL -0.0215 (Fraction)	#check that omega matrix is positive definite
# Theta: WT V2 = 0.233 (Power)	if (min (eigen (omega) $S_{values}) < 0$) return (list (SUCCESS=F))
# $Omega: CI. CI. 0.0641$	II (MIII (EIGEN (OMEGA) VALAED) (0) IEEAIII (IIDE (DOCCIDD I))
# Omega: CL V2 0.0571	#Calculate individual parameter values
# Omega: V_2 V_2 0.142	etas <- murnorm(1 mu=ren(0 length(theta)) Sigma=omega)
# $Omega: V2 V2 0.142$	rarms < - list (ka=theta[1] * exp(etas[1])
$\# \text{Omoga}; \text{W2} \qquad \text{W3} \qquad 0.112$	raims < rist(Ra-ineta[r]) exp(etas[r]), $raims < rist(Ra-ineta[r]) exp(etas[r]),$
# $Omega: V2 V3 0.112$	u^2 = theta [2] (1 + (age +0) theta [12]) to v_2 (ct as [2]),
# $Omega: VS VS 0.147$	v_2 -theta[5] ((weight/00) theta[12]) exp(etas[5]), w_2 -theta[4] * even(etas[4]), g=theta[5] * even(etas[5])
# Omega. EV = EMAX = 0.0111	v_{3} -theta[4] *exp(etas[4]), q -theta[3] *exp(etas[3]),
# Omega = EGE0 = EGE0 = 0.0425	ev - cneta[v] = exp(etas[v]),
# Omega: EC50 EC50 0.0455	emax-theta[/]^exp(etas[/]),ecsu-theta[o]^exp(etas[o]),
# Onlega: KOUI KOUI 0.0421	$\operatorname{mill}-\operatorname{checa}[9] \operatorname{exp}(\operatorname{ecas}[9]), \operatorname{koul-checa}[10] \operatorname{exp}(\operatorname{ecas}[10]))$
# Sigma: PROP.PK 0.0392 (Variance)	
# Sigma: PROP.PD 0.0100 (Variance)	#generate predictions
# Therapy: drug I (I=LY)	<pre>state <- c(al=(dose*1000),a2=0,a3=0,a4=parms\$e0)</pre>
# Therapy: dose [50] (mg)	results <- vode(state,c(timepoints),model.DE,parms=parms)
<pre># Therapy: dose.times [0] (hours)</pre>	pk <- results[,"a2"]/parms\$v2
# Measurement: timepoints [0,1,2,3,4,5,6,7,8,9,10,11,	,12, pd <- results[,"a4"]
13,14,15,16,17,18,19,20,21,22,23,24] ((hours)
# Covariate: age 40 (years)	#apply residual error
# Covariate: weight 80 (kg)	pk <- pk*(1 + rnorm(length(pk),mean=0,sd=sqrt(sigma[1])))
# Endpoint: PK (ng/mL)	pd <- pd*(1 + rnorm(length(pd),mean=0,sd=sqrt(sigma[2])))
# Endpoint: PD (pM)	cfb <- pd - parms\$e0
# Endpoint: CFB (pM)	
# END	return(list(PK=pk,PD=pd,CFB=cfb,SUCCESS=T))
	}
	 Simulation Meta Data
	Simulation Name PAGE
	Description Comparison of pharmacodynamic response by treatment regimen.
	Simulation Type Patient

Rep Numbe

umber of Nodes

BootStrap File

Parameters Option

Covariance matrix file

"Typical Response" may be viewed directly within simulation interface, with interactive control of model parameters, covariate values, and treatment regimens.

More extensive visualization environment developed using TICBO Spotfire®

- Automated import of simulation results
- Templates for standard views of simulations results
- Subset, filter, and trellis by parameter value, covariate or treatment regimen
- Webplayer version of software allows corporate-wide access via any web browser

Simulation Interface

Graphical user interface for input of simulation specifications, model parameters, ^ Theta Parameter

Simulation Specifications

- –Patient- vs. study-level simulation
- –Number of replicates / patients
- -Treatment regimens
- -Simulation timepoints
- **Model Parameters**
- –Discrete values
- -Parameter uncertainty sampled from
 - normal, log-normal, uniform, or categorical distributions
 - Bootstrap file (CSV)
 - Multivariate normal distribution (covariance matrix)
- **Covariate Values**
- -Discrete values
- -Normal, log-normal, uniform, or categorical distributions
- -Sampled from external file of observed patient values

Q													
	167							D	N	LN	U	С	
E0	99.7							D	N	LN	U	С	
EMAX	0.87							D	N	LN	U	С	
EC50	95							D	N	LN	U	С	
HILL	1							D	N	LN	U	С	
KOUT	0.0003							D	N	LN IN		0	
AGE CI	0.0345								N	LN		0	
WT V2								D	N				
	0.233							U	IN	LIN	U	U U	*
 Omg Para 	ameters												
KA	KA	CL	V2	V3	Q	E0	EMAX	EC50	HILL	KOUT	AGE.CL	WT.V2	
NA 01	0	-		-		-	-		-	-	-	-	
UL VO	0	0.0641	-	-	-	-	-	-	-	-	-	-	
V2	0	0.0571	0.142	-	-	-	-	-	-	-	-	-	
V3	0	0.0621	0.112	0.147		-	-	-	-	-	-	-	
Q	0	0	0	0	0	-	-	-	-	-	-	-	
E0	0	0	0	0	0	0.0111	-	-	-	-	-	-	
EMAX	0	0	0	0	0	0	0.0423	-	-	-	-	-	
EC50	0	0	0	0	0	0	0	0.0455	-	-	-	-	
HILL	0	0	0	0	0	0	0	0	0	-	-	-	
KOUT	0	0	0	0	0	0	0	0	0	0.0421	-	-	
AGE.CL	0	0	0	0	0	0	0	0	0	0	0	-	
WT.V2	0	0	0	0	0	0	0	0	0	0	0	0	
 Covariate Use covariate 	es Parameters tes file						_	D	N	LN	U	C	-
^ Covariate Use covaria	es Parameters tes file							D	N	LN	U	C	×
^ Covariate <u>Use covaria</u> age	es Parameters tes file normal M	lean 50 Star	ndard deviation 1	0 Min 25	Max 80	Seed 539		D	N	LN	U	C	×
 Covariate Use covaria age weight 	es Parameters tes file normal M normal M	lean 50 Star lean 80 Star	ndard deviation 1	0 Min 25 5 Min 40	Max 80 Max 120	Seed 539 Seed 977		D D D	N N N	LN		C C C	
 Covariate Use covariat age weight Measurent timepoints 	es Parameters tes file normal M normal M ment Timepoin	lean 50 Star lean 80 Star ats 0,1,2,3,4,5,6,7	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13,	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977		D D D	N N N	LN	U U U U	C C C	
 Covariate Use covariat age weight Measures timepoints Treatmer 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet	lean 50 Star lean 80 Star lts 0,1,2,3,4,5,6,7 ters	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13,	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120	Seed 539 Seed 977		D	N N N				
Covariate Use covariat age weight Measuren timepoints Treatmer THERAPY1(1)	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet 1=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13,	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977		D D D	N N N				
 Covariate Use covariat age weight Measurent timepoints Treatment THERAPY1(1) Drug Deen 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet 1=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13,	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977		D D D	N N N				
 Covariate Use covariat age weight Measurent timepoints Treatment THERAPY1(1) Drug Dose 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet 1=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13,	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977		D	N N N				
 Covariate Use covariat age weight Measurent timepoints Treatment THERAPY1(1) Drug Dose Dose-Times 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its [0.1.2.3,4,5,6,7 ters 1 [50, 50, 5 [0, 24, 48]	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 10, 50, 50, 50, 50, 50 10, 50, 50, 50, 50, 50	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977		D D D T	N N N				×
 Covariate Use covariat age weight Measurent timepoints Treatment THERAPY1(1) Dose Dose-Times 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its [0,1,2,3,4,5,6,7 ters 1 [50, 50, 5 [0, 24, 48	ndard deviation 1 ndard deviation 1 7,8,9,10,11,12,13, 0, 50, 50, 50, 50, 50 3, 72, 96, 120, 144	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977	NewAr		N N N Co	LN LN LN			
Covariate Use covariat age weight Measure timepoints THERAPY1(1 Drug Dose Dose-Times THERAPY1(1	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its [0,1,2,3,4,5,6,7 ters [1 [50, 50, 5 [0, 24, 48	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 1,7,9,12,9,120,144	0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1	Max 80 Max 120 9,20,21,22,23,24	Seed 539 Seed 977	NewA	D D D	N N N Co	LN LN LN ypyArm			
Covariate Use covariat age weight Measure timepoints THERAPY1(1 Drug Dose THERAPY1(1 Drug	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters 1 50, 50, 5 0, 24, 48	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 0, 50, 50, 50, 50 3, 72, 96, 120, 144	0 Min 25 5 Min 40 14,15,16,17,18,1	Max 80 Max 120	Seed 539 Seed 977	NewA	D D D	N N N Co	LN LN LN ypyArm			
 Covariate Use covariat age weight Measurent Measurent Treatment Treatment Treatment Therapy1(1) Drug Dose THERAPY1(1) Drug Dose 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters 1 50, 50, 5 0, 24, 48 1 100, 100	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 60, 50, 50, 50, 50 5, 72, 96, 120, 144 1, 100, 100, 100, 100, 1	0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1	Max 80 Max 120	Seed 539 Seed 977	NewA	D D D	N N N Co	LN LN LN			
 Covariate Use covariat age weight Measurent Measurent Treatment Treatment THERAPY1(1) Drug Dose THERAPY1(1) Drug Dose Dose The covariate 	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters 1 50, 50, 5 0, 24, 48 1 100, 100 0, 24, 48	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 60, 50, 50, 50, 50 5, 72, 96, 120, 144 1, 100, 100, 100, 1 1, 72, 96, 120, 144	0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1	Max 80 Max 120	Seed 539 Seed 977	NewA	D D D	N N N Co	LN LN LN uppyArm			
 Covariate Use covariat age weight Measurent Measurent Treatment Treatment THERAPY1(1) Drug Dose Thug Dose Dose Thug Dose Do	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its 0,1,2,3,4,5,6,7 ters 1 50, 50, 5 0, 24, 48 1 100, 100 0, 24, 48	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 60, 50, 50, 50, 50 8, 72, 96, 120, 144 1, 100, 100, 100, 1 1, 72, 96, 120, 144	0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1	Max 80 Max 120	Seed 539 Seed 977	NewA		N N N Co	LN LN LN pyArm		C C C	
 Covariate Use covariation age weight Measurent Measurent Treatment Treatment THERAPY1(1) Drug Dose <li< td=""><td>es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)</td><td>lean 50 Star lean 80 Star its [0.1.2.3,4,5,6,7 ters 1 50, 50, 5 [0, 24, 48 1 100, 100 [0, 24, 48</td><td>ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 10, 50, 50, 50, 50 3, 72, 96, 120, 144 1, 100, 100, 100, 1 1, 72, 96, 120, 144</td><td>0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1 00, 100</td><td>Max 80 Max 120</td><td>Seed 539 Seed 977</td><td>NewA</td><td>D D D D m m</td><td>N N N Co</td><td>LN LN LN UN NpyArm</td><td></td><td>C C C</td><td></td></li<>	es Parameters tes file normal M normal M ment Timepoin ntArm Paramet I=LY)	lean 50 Star lean 80 Star its [0.1.2.3,4,5,6,7 ters 1 50, 50, 5 [0, 24, 48 1 100, 100 [0, 24, 48	ndard deviation 1 ndard deviation 7 7,8,9,10,11,12,13, 7,8,9,10,11,12,13, 10, 50, 50, 50, 50 3, 72, 96, 120, 144 1, 100, 100, 100, 1 1, 72, 96, 120, 144	0 Min 25 5 Min 40 14, 15, 16, 17, 18, 1 00, 100	Max 80 Max 120	Seed 539 Seed 977	NewA	D D D D m m	N N N Co	LN LN LN UN NpyArm		C C C	

D N

Results

- -The system has substantially lowered the technical hurdles associated with running complex simulations to inform the drug development process.
- -Large simulations can now be run in a matter of minutes, rather than hours or days.
- -Interactive visualization of simulation results facilitates effective communication of model-derived information and projected outcomes in a team environment.
- -The system provides a central repository for models and simulations, fostering information sharing and collaboration

Conclusions

The system achieves two key objectives: (1) generation of simulation results to support real-time collaborative analysis, and (2) expansion of simulation capability to a broader non-technical audience for increased exploration of drug/disease models. The resulting knowledge supports decision-making related to compound selection, dose selection, and study design

optimization. The improvements in process gained from this initiative are essential for the integration of quantitative pharmacology into the drug development process.

