slotervaartziekenhuis

Bioequivalence study of a C1-esterase-inhibitor product (Cetor[®]) with optimised sampling design

Ron J Keizer¹, Esther van 't Wuijver², Joost J Marcar², Paul FW Strengers², Alwin DR Huitema¹

(1) Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands; (2) Sanquin Plasma Products, Amsterdam, The Netherlands

Introduction

Cetor is a highly purified C1-inhibitor concentrate prepared from human fresh frozen plasma and is used in the treatment of hereditary and acquired angioedema (HAE/AAE). Changes in the manufacturing process required a bioequivalence study to asses changes in PK.

Limitations:

No healthy volunteers could be used

Very small patient population

Aim:

- reduce the number of samples by trial simulation
- Establish bio-equivalency

Methods

- 1. PK model development
- Retrospective data
- 9 Patients, 4-9 samples per patient
- Total and functional protein assays
- Both data assessed simultaneously
- Estimation of fraction functional (F_{func})
- Endogenous production: zero-order
- infusion into the central compartment

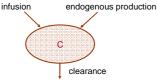
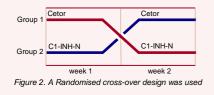


Figure 1. PK model


2. Evaluation of reduced sampling schedule

- By trial simulation
- Randomised crossover design, interval of 1 week between administration of products
- Two scenarios for PK characteristics of

```
new product unequal:
(a) F<sub>func</sub> is 25% lower
```

```
(b) CL is 20% higher
```

- 1000 trials for each scenario, n=10
- CPMP (n=14) & reduced (n=8) sampling design
- Assess power to detect a difference with a type I error of 0.05

3. Clinical trial

- Randomised, blinded, crossover
- n = 13 HAE patients
- Doses 1000U, 1500U and 2000U

Relative differences in PK properties induced by the adaptations in production process for CL, V, F_{func} estimated by introduction of a factor on the respective parameter:

CL	$= \theta_1 \cdot \theta_x^{PROD}$
V	$= \theta_2 \cdot \theta_Y^{\text{PROD}}$
F_{func}	$= \theta_1 \cdot \theta_2^{PROD}$

PROD=0 (Cetor) or PROD=1 (C1-INH-N)

The likelihood ratio test was used to test for significance (p < 0.05).

Results

1. PK model development

A one compartment model with linear clearance was shown to describe the data well. No improvement of fit could be established by adding compartments or introducing non-linear clearance.

Table 1. Parameter estimates from

		E	Estir	nate		RSE	
CI		0.	.067	6 L/I	n	12.4%	6
V			4.4	1 L		5.96%	6

2. Evaluation of reduced sampling schedule

Table 2. Results of trial simulations. Estimates of difference in parameter estimate and power of the design.

-				
	Full d	esign	Reduced	design
F _{func} (75%)	76 9% (6	5 7-89 2)	75 6% (61	7-90 7)
Power	92.	2%	▶ 86.1	%
CL (120%)	1100/ /0	9 6 1 1 0)	119% (97	0 1 1 7)
Power	47.	8% ——	+ 40.3	%

- Moderate reduction in power due to reduced schedule: -6.1 and -7.5% respectively.
- Power to detect differences in F_{runc} was much higher than power to detect a difference in CL.

3. Clinical trial

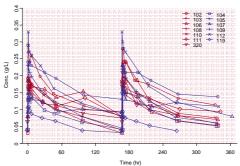


Figure 3. PK data for patients receiving Cetor (red) and C1-INH-N (blue) in the first week of treatment.

PK analysis:

- Interindividual variability for CL, V and F_{func} were 20.1%, 19.6% and 33.5% resp.
- IOV was significant on V (8.3%)
- No significant covariates were found

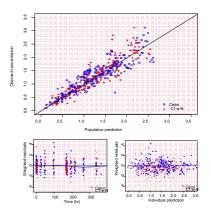


Figure 4. Goodness of fit plots: observed vs predicted (upper) concentrations, weighted residuals versus time (bottom-left), weighted residuals versus predicted concentrations (bottom-right)

Differences in PK parameters

No significant differences for the primary PK parameters were found since all 95% CI contained 1 (table 2). Furthermore, the 95% confidence intervals of the differences were all within the range of 80-125%.

Table 3. Differences in PK induced by the change in manufactering process.

	Mean ratio 95% conf. Interval
CL (L.hi	') 107% 93% - 123%
V (kg.m	1) 96% 88% - 107%
Ffunc	101% 92% - 110%

Discussion

- The power is only affected modestly by reduced sampling: the clinical trial was deployed using a reduced sampling design.
- EMEA guidelines state that 90% confidence intervals for the PK parameters should between 80-125% of the reference value. In this study, even the 95% CI were shown to be within these ranges and all contained 1.

Conclusion

- Trial-simulation were successfully used to assess whether a reduced sampling schedule could be used in a bioequivalence study of two C1-esterase-inhibitor products.
- The reduced sampling design only had minimal influence on the power of the study to find differences in PK.
- The results of the clinical trial showed that the adaptations in the production process did not lead to changes in PK parameters.