Mixture models in PDx-MC-PEM

Serge Guzy, PhD

President POP-PHARM; Inc Department of Pharmacokinetics, XOMA

MC-PEM METHODOLOGY (Prior Sampling)

Sample from the prior
distribution and evaluate the
weighted individual
likelihood at each sample k

Compute the individual weighted mean

 $z_{(k)i} = \frac{l(y_i, \theta_{(k)i})}{\sum_{k=1}^{r_i} l(y_i, \theta_{(k)i})}$

$$\overline{\theta}_{Gi} = \sum_{k=1}^{r_i} z_{(k)i} \theta_{(k)i}$$

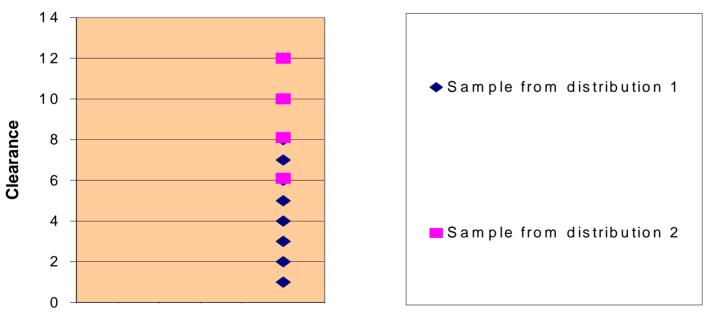
Compute the individual variance covariance matrix

$$\overline{B}_{Gi} = \sum_{k=1}^{r_i} z_{(k)i} (\theta_{(k)i} - \overline{\theta}_{Gi}) (\theta_{(k)i} - \overline{\theta}_{Gi})'$$

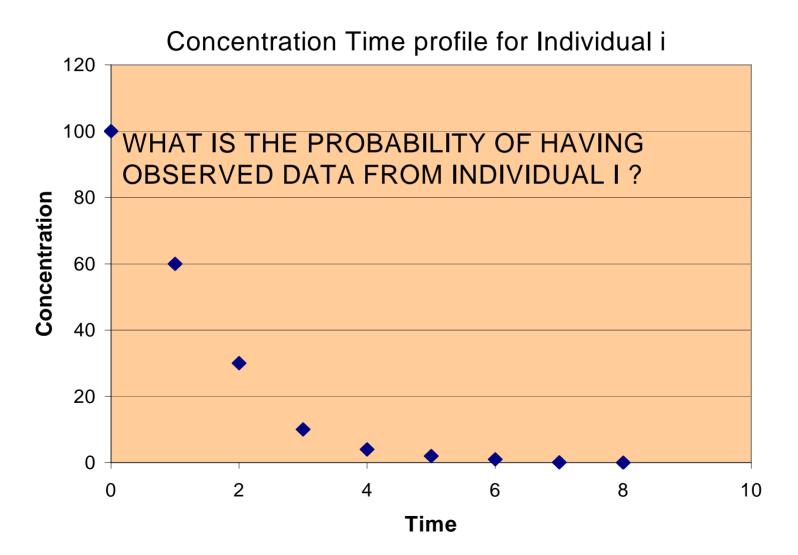
MC-PEM METHODOLOGY (Direct Sampling)

Update the prior

Update the Population means


$$\mu_{new} = \frac{1}{m} \sum_{i=1}^{m} \overline{\theta}_{Gi}$$

Update the Population Variances and Covariances


$$\Omega_{new} = \frac{1}{m} \sum_{i=1}^{m} \left(\overline{\theta}_{Gi} - \mu_{new} \right) \left(\overline{\theta}_{Gi} - \mu_{new} \right)' + \frac{1}{m} \sum_{i=1}^{m} \overline{B}_{Gi}$$

Suppose 1/3 individuals sampled from distribution 1 (p) and 2/3 individuals sampled from distribution 2 (1-p): Example shows the different Clearance we could have

Probability to observe individual I data = Probability that any individual is coming from distribution 1 (p_1) x Probability to observe data from individual I, given the individual is coming from distribution 1 (EXP(LOG-LIKELIHOOD)=pi,1)

+ Probability that any individual is coming from distribution 2 (1-p₁) x Probability to observe data from individual I, given the individual is coming from distribution 2 (EXP(LOG-LIKELIHOOD)=pi,2)

Contribuțion from distribution 1 Contribuțion from distribution 2

~ $p_1 x p_1, 1 + (1-p_1) x p_1, 2$

Contribution from distribution 1 in percent

 $\frac{p \times pi,1}{p \times pi,1 + (1-p) \times pi,2} = weight_{i,1}$

Contribution from distribution 2 in percent $\frac{(1-p) \times pi,2}{p \times pi,1 + (1-p) \times pi,2} = weight_{i,2}$

The algorithm

Update of p for each distribution At the first iteration must enter initial estimate for p_k

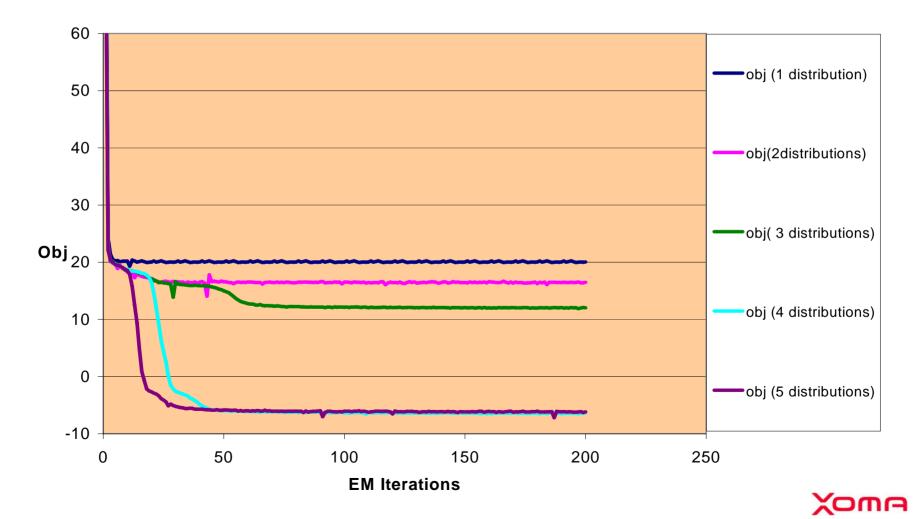
From iteration 2:
$$p_k = \frac{1}{n} \sum_{i=1}^{n} weight_{i,k}$$

Update of population mean and variances For each distribution

$$\mu_{new,k} = \frac{\sum_{i=1}^{m} weight_{i,k} \overline{\theta}_{Gi,k}}{\sum_{i=1}^{m} weight_{i,k}}$$

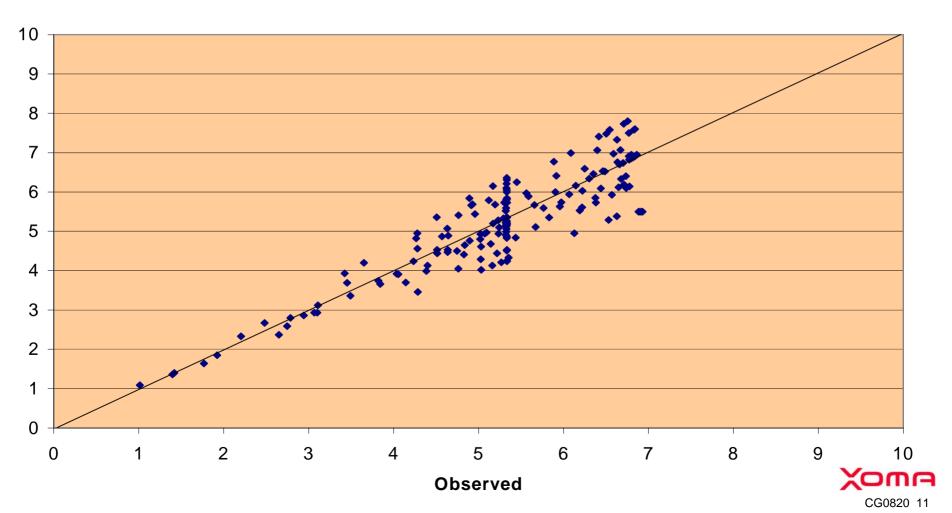
$$\Omega_{new,k} = \frac{\sum_{i=1}^{m} weight_{i,k} \left(\overline{\theta}_{Gi,k} - \mu_{new,k}\right) \left(\overline{\theta}_{Gi,k} - \mu_{new,k}\right)' + \sum_{i=1}^{m} weight_{i,k} \overline{B}_{Gi,k}}{\sum_{i=1}^{m} weight_{i,k}}$$

PDx-MC-PEM Example


True Population Characteristics

	Proportion	Cl mean	%
			Variability
Distribution			
1	20%	0.1	30%
2	20%	0.5	30%
3	20%	2	30%
4	20%	5	30%
5	20%	10	30%

Results

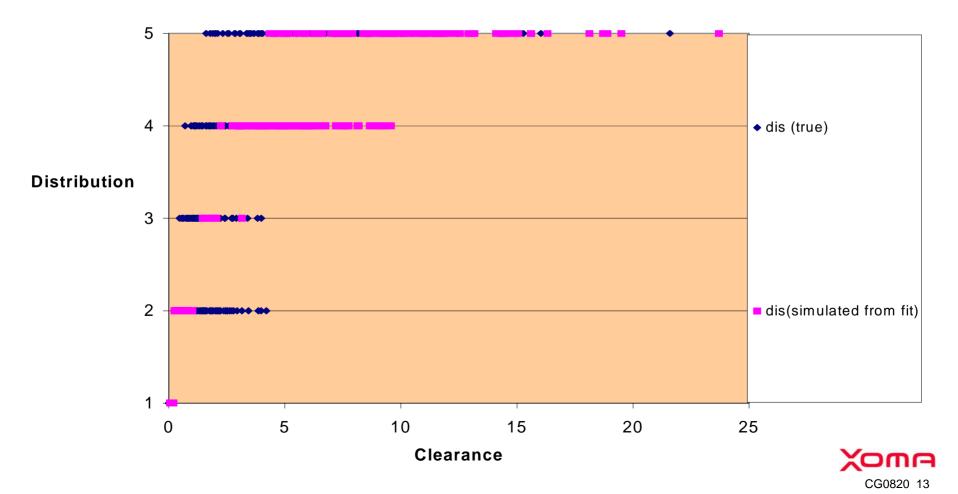

Effect of Number of mixtures (1 to 5) on the Objective function

CG0820 10

Results

Observed vs predicted Individual Concentration (predicted from the most likely distribution)

Results


Comparison between True and fitting Population

Fitting	Proportion	Cl mean	%		Proportion	Cl mean	%
Population			Variability				Variability
Distribution				Distribution			
1	20%	0.01	46.30%	1	20%	0.1	30%
2	8%	1.42	1.92%	2	20%	0.5	30%
3	2%	1.45	2.23%	3	20%	2	30%
4	20%	2.4	96.40%	4	20%	5	30%
5	50%	5.78	36.61%	5	20%	10	30%

Fitting Results

Comparison between True simulated Population and the simulated one from the fit

