Objective

- To assess the power of the stepwise-based procedure and HLAASSO for detecting Single Nucleotide Polymorphisms (SNP) effects on a pharmacokinetic parameter using NLMEM

Context

- Study of the DNA variations on genes coding for proteins involved in drug transport, metabolism, and effect in relation to the inter-individual variability in drug response
- Focus:
 - Selection of metabolic pathways during drug development
 - Individualized therapy
 - Integration of diversity in population genetics
- Statistical analyses
 - ANOVA-based protocol derived on known parameters
 - Selection of metabolic pathways during drug development
 - Individualized therapy
 - Integration of diversity in population genetics
 - Non-linear Mixed Effect models (NLMEM)

Simulation study

- A typical simulated dataset
- Structural and statistical model
 - Inspired from real study [4]
- Power = number of False positive
- True positive = number of True positive
- Power estimates and their 95% confidence interval versus the minor allele frequency (MAF) of the causal variant for both algorithms
- Figure 2: Power estimates and their 95% confidence interval versus the minor allele frequency (MAF) of the causal variant for both algorithms

Results

- Evaluation
 - 200 data sets simulated under H0 and H1
 - T = number of simulated data sets
 - P = number of PK model parameters
 - SNP = number of causal SNPs
 - TP = number of True positive
 - FP = number of False positive
 - SNPs uncorrelated to the causal variant

Discussion

- Similar power of the stepwise-based procedure and HLAASSO
- Reasonable number of false positives
- Important gain in computing time with HLAASSO
- On-going work
 - to increase the number of causal variants
 - to consider moderate to weak effects (gradient)

References