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Background : Small Cell Lung Cancer (SCLC)

• Aggressive and fast growing neoplasm

• Highly sensitive to treatment (chemotherapy and radiation)

• Fast emergence of drug resistance

• Bad prognosis (OS with treatment ~ 10months, OS without treatment ~ 3months)*

• Treatment has not evolved significantly in  the last decades

*http://lungcancer.about.com/



Tumour assessment

Response Evaluation 

Criteria In Solid Tumors

(RECIST)

Categorise sum of tumour longest diameters (SLD) in target lesions:

• COMPLETE RESPONSE (CR): disappearance of all lesions

• PARTIAL RESPONSE (PR) : 30% decrease in SLD

• DISEASE PROGRESSION (DP): 20% increase in SLD or new lesions

• STABLE DISEASE (SD) : <20% increase or <30% decrease

DIAGNOSE 1st CT SCAN 2nd CT SCAN

Week 0 ~Week 8 ~ Week 20

TREATMENT PERIOD

1st FOLLOW-UP
CT SCAN

~ Week 30

FOLLOW-UP PERIOD

Chemotherapy
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2nd FOLLOW-UP
CT SCAN

~ Week 40

Background : Standard treatment in SCLC
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TREATMENT PERIOD FOLLOW-UP PERIOD
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Biomarkers

Lactate dehydrogenase 
(LDH)

Neuron specific Enolase
(NSE)

• Glycolytic enzymes easily measured in blood

• Known to be related to disease

• Collected clinical practice but not used to assess clinical efficacy

• Scepticism – low specificity and sensitivity

• Empirical analysis  Semi-mechanistic modelling
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~ Week 30

2nd FOLLOW-UP
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~ Week 40

Background : Standard treatment in SCLC
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To develop a framework to early predict 
individual future disease progression



To investigate the feasibility of using circulating 
biomarkers as predictors of tumour progression in SCLC
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Biomarker model 

(in absence of tumor size information)

Aims/workflow
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Available data
SCLC patients (n=60): Diagnosed between 2005 – 2012 in University Clinic of Navarra

• 1ST LINE TREATMENT : Etoposide + cisplatin/carboplatin

• OBSERVATIONS

- 369 LDH + 152 NSE

- 218 CT scans

• 48% patients concomitant radiotherapy

• 50% patients concomitant GCSF

TRAINING 
DATASET
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SCLC patients (n=22): Diagnosed between 2012 – 2014 in University Clinic of Navarra

• 1ST LINE TREATMENT : Etoposide + cisplatin/carboplatin

• OBSERVATIONS

- 138 LDH + 77 NSE 

- 78 CT scans 

• 64% patients concomitant radiotherapy

• 47% patients concomitant GCSF

EXTERNAL 
DATASET



TRAINING DATASET (n=60) EXTERNAL DATASET (n=22)

Available data

LDH NSE LDH NSE
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Biomarker model development



DISEASE represents tumour burden. However, tumour data (RECIST) were not included in the model
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TREATMENT

KDE

DISEASE represents tumour burden. However, tumour data (RECIST) were not included in the model

K-PD approach (PK data not available).
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DISEASE represents tumour burden. However, tumour data (RECIST) were not included in the model

K-PD approach (PK data not available).

Resistance formed with cumulative chemotherapy doses


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Radiotherapy included as in irreversible effect on the disease proliferation rate

G-CSF (Granulocyte colony-stimulating factor), covariate increasing physiological LDH synthesis 

Biomarker model development

Buil-Bruna et al, The AAPS Journal 2014
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Biomarker model evaluation & validation
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Biomarker model 

(in absence of tumor size information)

Is our model predictive of CT scan outcomes?
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Is our model predictive of CT scan outcomes?
Patient's response was classified according to the change in total tumour size since the previous CT scan
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i = patient i
j = CT scan j

We can calculate the change in total underlying latent disease between a CT scan and its previous CT scan

Patient's response was classified according to the change in total tumour size since the previous CT scan

Is our model predictive of CT scan outcomes?
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1- Specificity

Buil-Bruna et al, The AAPS Journal 2014
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VISUAL PREDICTIVE CHECK



Aims

FOLLOW-UP PERIODTREATMENT PERIOD

1st FOLLOW-UP
CT SCAN

~ Week 30

2nd FOLLOW-UP
CT SCAN

~ Week 40

Chemotherapy
Radiotherapy

To develop a framework to early predict 
individual future disease progression



Early prediction of P(DP): Example individual patient
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- Retrieve last 1000 MCMC samples 

 individual posterior distribution
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• When P(DP) is high patients may be switched to 2nd line treatment early
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• When P(DP) is high patients may be switched to 2nd line treatment early

• For demonstration purposes we have defined:

• “Sufficiently high” : P(DP) > 80%

• “Sufficiently low” : P(DP) < 20%

• Clinician’s decision may depend on 2nd line treatment:

• Expected efficacy and toxicity

• Patient characteristics

• Financial burden

Early prediction of P(DP): Decision making



Early prediction of P(DP): External dataset



• We have developed a model which allowed us to identify the

relationship between biomarker dynamics and tumour size

dynamics.

• We have predicted clinical outcome in an external data follow up CT

scans for 75% of the patients using only their within treatment data.

• We propose a modelling framework which provides clinicians the

possibility to improve disease monitoring in SCLC patients.

Summary



Acknowledgement: The research leading to these results has received support from the Innovative Medicines 
Initiative Joint Undertaking under grant agreement n° 115156, resources of which are composed of financial 
contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ 
in kind contribution. The DDMoRe project is also financially supported by contributions from Academic and SME 
partners. This work does not necessarily represent the view of all DDMoRe partners.

Department of Pharmacy and 

Pharmaceutical Technology 

University of Navarra

Department of Medical Oncology 

University Clinic of Navarra

Acknowledgements


