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Objective: Model evaluation is an important part of model building, andhas been the subject of regulatory guidelines. We illustrate the use
of some recently proposed metrics on several simulated datasets.

Introduction

• Several simulation-based metrics developed over the last decade:

– Visual Predictive Checks (VPC) [1]
– prediction discrepancies (pd) [2]
– normalised prediction distribution errors (npde) [3]

• Assumptions

– model MB has been built using a building dataset B
– null hypothesis: this model can be used to describe the data collected

in a validation dataset V (=B in internal evaluation)

• General class of Posterior Predictive Check (PPC), born in the
Bayesian world

– model MB used to simulate data according to the design of V
– compare a statistic computed on the real data in V to the distribution

of the statistic obtained through the simulations
– hereplug-in approach (ignoring uncertainty)

Model and data

Statistical models
Model for observationyi j

yi j = f (θi,xi j ,zi)+g(θi,γ,xi j ,zi)εi j

where:

• subjecti (i = 1, ...N), with ni observationsyi = {yi1, ...,yini} at times
ti j , and covariateszi

• individual parametersθi

– often modelled parametrically as a functionh of fixed effectsµ and
random effectsηi:

θi = h(µ(zi),ηi) whereη ∼N (0,Ω)

– in PK/PD,h is frequently a log-normal transformation, such that for
the pth component:

θi(p) = µ(p)(zi) eηi(p)

• f : structural model, common to all subjects

• g: residual error model, potentially depending on additional parame-
ters, for instance

g(θi,xi j ,zi) = a+b fc(θi,xi j ,zi) (combined error model)

Illustrative example

Dataset from 12 subjects given a single oral dose of theophylline used
as a template to simulate illustrative datasets:

• 11 blood samples over a period of 25 hours (data at t=0 was omitted
from the dataset for all patients): nominal times 15 and 30 min, 1, 2,
4, 5, 7, 9, 12, 24 h

• one-compartment model with first-order absorption

• variability models: IIV modelled using an exponential model, and
combined error model for the residual variability

Table 1: parameters estimated in original dataset

Fixed effects Interindividual variability (SD)
ka (hr−1) 1.51 ωka (-) 0.67
V (L) 31.9 ωV (-) 0.12
k (hr−1) 0.087 ωk (-) 0.13
a (mg.L−1) 0.088 cor(ηk,ηV) (-) 0.99
b (-) 0.26

Simulated datasets (N=100)

• Vtrue: simulated under MB (H0)

• Vbioavail: bioavailability divided by 2 (⇔ V/F multiplied by 2)

• VIIV : IIV increased by 50% for V

• V2cpt: simulated with a two-compartment model

– ka=1.55 hr−1, V=20 L, k=0.02 hr−1, k12=0.2 hr−1, k12=0.01 hr−1

– 30% IIV on k12 and k12

– parameters re-estimated with a one-compartment model

Methods

Simulation-based metrics
Visual Predictive Check:

• K datasets Vsim(k) simulated under model MB using the design of the
validation dataset V (ysim(k)

i : vector of simulated observations for the
ith subject in thekth simulation)

• plot prediction interval corresponding to a given value (eg90, 95%)

Prediction discrepancies and prediction distribution errors:

• Fi j : cumulative distribution function (cdf) of the predictivedistribution
of Yi j under model MB

– Fi j obtained using Monte-Carlo simulations (same as VPC)

• prediction discrepancy for observationyi j

pdi j = Fi j (yi j)≈
1
K

K

∑
k=1

δi jk

– whereδi jk = 1 if ysim(k)
i j < yi j and 0 otherwise

– pd expected to followU(0,1) under the model
– within-subject correlations introduced when multiple observations

are available for each subject [2]

• prediction distribution errors

– decorrelation using empirical meanEempi and empirical variance-
covariance matrix var(yi) over theK simulations for simulated and
observed data:

ysim(k)∗
i = V−1/2

empi(y
sim(k)
i −Eempi)

y∗i = V−1/2
empi(yi −Eempi)

– pde obtained using decorrelated values and transformed to anormal
distribution using the inverse of the normal cdf

pdei j = F∗
i j (y

∗
i j)≈

1
K

K

∑
k=1

δ∗i jk

npdei j = Φ−1(pdei j) ∼N (0,1) underH0

Graphs and tests

• Tests

– VPC: no test (graphical approach), use Numerical Predictive Check
∗ PI-NPC: compare percentages of outliers outside several predic-

tion intervals to the theoretical value
– pd and npde
∗ Kolmogorov-Smirnov test: omnibus test
∗ specific tests (Wilcoxon test for mean, Fisher test for vari-

ance, Shapiro-Wilks for normality), combined as a global p-value
through a Bonferroni correction [3]

– type I error inflation for non-corrected metrics induced by within-
subject correlations [4]

• Graphs

– VPC: visual diagnostic
– the distribution of pd and npde can be assessed based on similar

graphs as traditional residuals (eg WRES)
∗ residuals versus time and predictions
∗ histogram and QQ-plots

– prediction bands around selected percentiles (obtained through re-
peated simulations under MB) can be added to the different graphs

Results

Tests

• Simulations

– performed under model MB for the first three datasets

– performed with 2-cpt model with parameters estimated

• Most tests detect the simulated model misspecifications, except:

– KS test insensitive to IIV change

– PI-NPC test on 80% interval insensitive to structural modelmisspec-
ification

Dataset Separate tests Global tests PI-NPC
Mean Variance Normality 3 tests combined KS test 80% PI

Vtrue 0.23 0.71 0.57 0.69 0.46 0.53
Vbioavail <10−9 0.002 <10−10 <10−10 <10−15 <10−15

VIIV 0.78 0.01 0.69 0.04 0.51 4.10−6

V2cpt 0.001 0.79 0.64 0.002 0.005 0.11

Table 2: Values of the tests onnpdeand of the binomial test on the cov-
erage of the PI-NPC (90% PI), for the four datasets simulatedin the
present study.

Graphs

Adding prediction bands and/or observed data may enhance the visual
appeal of diagnostic graphs. Figure 1 shows an example with VPC:
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Figure 1: VPC plots for Vtrue, with several representations. Top: 2.5 and
97.5th percentiles of the simulated data; thick dashed lines: 50th percentile;
dots: observations. Bottom: 95% prediction intervals around 2.5, 50 and
97.5th percentiles (coloured areas); dotted/dashed lines: 2.5, 50 and 97.5th

percentiles of observed data (thick line: median).

Figures 2 and 3 show plots of VPC and pd versus time with prediction
bands for the 4 simulated datasets.
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Figure 2: 95% VPC with prediction bands, for datasets Vtrue (upper left),
Vbioavail (upper right), VIIV (lower left), V2cpt (lower right).
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Figure 3: Plot of pd versus time with prediction bands, for datasets Vtrue

(upper left), Vbioavail (upper right), VIIV (lower left), V2cpt (lower right).

Conclusion

• Array of complementary tools to be used by modellers

– pd and VPC allow to visualise patterns with time
– npde and PI-NPC provide a test

• Simulation-based metrics

– require simulations under the model, which can be difficult to ob-
tain, eg in the presence of drop-outs or censored data [5]

• Prediction bands obtained through repeated simulations

– computer-intensive: final models only
– enhance the detection model misspecifications by providingclear vi-

sual comparison of model expected behaviour versus observed data

• Tests

– only npde provide adequate type I error thanks to decorrelation [4]
– in real data, tests may be sensitive to large datasets or outliers
– global tests: may be difficult to pinpoint exactly which aspects of

the model to change
– best used as a signal to guide further model improvement
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