Comparison of different tools for the optimization of a pediatric clinical trial

N. Gobeau, B. Boulanger, L. Sargentini-Maier UCB Pharma, Braine-l'Alleud, Belgium

Raffaele, living with epilepsy

The pediatric clinical trial

Objective of the trial:

Characterize the steady-state pharmacokinetics (PK) of a drug under development in children aged 1 month to 16 years old

The pediatric clinical trial

Initial dose dependent on weight category

- > PK samples constraints:
 - One visit per dose at the end of the treatment week;
 - No more than 2 PK samples per visit

Optimisation of the pediatric clinical trial

Objective: optimise the times of the limited number of samples to reduce the compromise for the pediatric parameter estimation

Optimal design tools employed:

- PFIM version 3.0
- POPT version 3.0
- PopED version 2.08

Rapid overview of the optimisation tools

	PFIM3.0	POPT3.0	PopED2.08
Optimisation	D-optimal	D-optimal	D-optimal
		➢ ED-optimal	ED-optimal
Algorithm	 Simplex (continuous time) Federov- Wynn (discrete time) 	Exchange & Simulated annealing (continuous & discrete times)	 Random search & Stochastic gradient & Line search (continuous) Modified Fedorov Exchange Algorithm (discrete)
Interface	Yes	Yes (limited)	Yes (limited)
Language	R (freeware)	Matlab or Stand- Alone version (limited)	Matlab
Developers	INSERM, University Paris 7 (S.Retout & F.Mentré)	University of Otago, University of Queensland, J&J (S.Duffull)	Uppsala University (A. Hooker, J. Nyberg)

Common major assumption

The PK is assumed to follow a population PK model built with <u>adult</u> data, in particular:

Ka
$$[h^{-1}] = \theta_{Ka} \times \exp(\eta_{Ka})$$
 where $\theta_{Ka} = 0.902$
CL/F $[L/h] = \theta_{CL} \left(\frac{WT}{69}\right)^{0.75} \times \exp(\eta_{CL})$ where $\theta_{CL} = 3.63$
V/F $[L] = \theta_{V} \left(\frac{WT}{69}\right) \times \exp(\eta_{V})$ where $\theta_{V} = 35.9$

Variances of $\eta_{Ka,CL,V} = 0.611$; 0.0575 and 0.0150 Proportional error with variance 0.0402

Time-Concentration equations

Comparison of problem implementation and output

	PFIM	POPT	POPED
Up-titration	Log- transformation	Fix dose for each sampling time	Log-transformation
Weight- dependent PK	Optimise individual sampling times	5 age groups with 3 competing models – each corresponding to 5 th ,50 th and 95 th quantile weights	5 age groups with a uniform weight distribution between minimum and maximum weights
Outcome	Intervals of optimised times over a large population	 Optimised times; Expected parameter precision for the « median » and extreme populations 	 Optimised times; Expected parameter precision of the clinical trial

Outcome in PFIM

Outcome

 Intervals of optimised sampling times over a large population... but no information on expected parameter precision 9

the next generation b

Outcome in POPT

Outcome

30

25

20

15

10

2

0

 θ_{CL}

Coefficient of Variation (%)

- Overall 6 sampling times;
- Expected precision of the parameters for each model

Expected precision of the main parameters

 θ_V

Optimised sampling times

Outcome in POPED

Outcome

- Overall 6 sampling times;
- Expected precision of the parameters of the trial

Comparison of the results

Optimised sampling times

Time (hr)

Design retained

Visit	Sampling times	
А	0.3-0.5hr	
	4-5 hr	ation t
В	Postdose (0-0.2 hr)	biophar
	4-5 hr	ma lea
С	Predose (11.5-12hr)	ider 20
	3.5-4.5 hr	600

13

Times for visits 1, 2, 3:

A-B-C for 1/6th of the patients A-C-B for another 1/6th patients B-A-C for another 1/6th patients B-C-A for another 1/6th patients C-A-B for another 1/6th patients C-B-A for another 1/6th patients

uch

Evaluation of the design

Methodology

- Simulated a large number of trials;
- Evaluated the parameters with NONMEM;
- Compared the estimated parameters with the « true » parameters used for the simulation;
- Calculated RMSE values (see Hooker et al, 2003)

$$\text{RMSE} = \frac{1}{\theta_k^{\text{TRUE}}} \sqrt{\left[\frac{1}{N} \sum_{i=1}^N \left(\theta_{k,i} - \theta_k^{\text{TRUE}}\right)^2\right]} \times 100 \ (\%)$$

Evaluation of the design

Rich sampling profile: 7 samples per visit (0,0.25,0.5,1,3,6,12), i.e. 21 samples per subject

Conclusions

> The main differences between the 3 optimising tools are:

- the implementation of the problem
- the outputs

The sampling times optimised by the 3 different tools were similar for this case;

Nowever, the optimised design is very much dependent on the assumed PK profile....

Acknowledgement

Steve Duffull

Andrew Hooker

Soakim Nyberg

the next generation biopharma leader 2009

