Population PK modeling of Midazolam in Children The effect of age versus other covariates

Ibrahim Ince^{1,2}, Saskia N. de Wildt², M.Y.M. Peeters³, N.J. Vet², Dick Tibboel², Meindert Danhof¹, Catherijne A.J. Knibbe^{1,2,3}

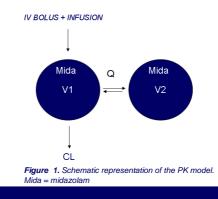
¹Leiden/Amsterdam Center For Drug Research, Department of Pharmacology, Leiden, the Netherlands, ²Erasmus MC Sophia Children's Hospital, Departments of Pediatric Surgery and Pediatrics, Rotterdam, the Netherlands, ³St. Antonius Hospital, Department of Clinical Pharmacy, Nieuwegein, the Netherlands

Background & Aim

In order to develop rational dosing schemes for drugs in children, we investigate the influence of age-related changes on the PK and PD of drugs. For the ontogeny of the CYP3A subfamily, we use midazolam as an *in vivo* probe to describe the clearance of CYP3A substrates in different patient populations, ranging from neonates to adolescents.

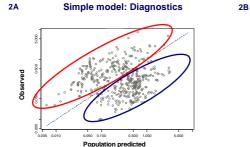
The aim of the current analysis is to study, among other covariates, the influence of age-related changes on the clearance of midazolam in two paediatric populations.

Table 1. Patient characteristics of dataset study 1 [1] and dataset study 2 [2]

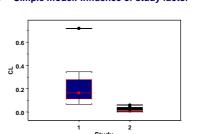

	study 1	study 2			
Study population	Postoperative	Critically ill			
	Elective craniofacial surgery				
Number of individuals	23	21			
Total PK samples	198	260			
Age (median, range)	11.2 m (3 – 25)	30 m (0.03 – 204)			
Weight (median, range)	9.6 kg (5.1 – 12)	13 kg (2.8-60)			
PELOD score	0 (0- 10)	10 (0 – 22)			
(median, range)					
Midazolam Administration	iv bolus: 0.1 mg/kg	iv bolus: 0.1 mg/kg			
	iv infusion: 0.1 mg/kg/hr	iv infusion: 0.1mg/kg/hr			
Max. duration infusion	22 hr	up to 627 hr			

Methods

Two previously published studies on paediatric midazolam PK [1] [2] were merged in R and population PK modeling was performed using NONMEM 6.2. During the covariate analysis step, the influence of the study population (study factor), postnatal age, bodyweight (BW), gender, and severity of illness (PELOD score) on clearance were investigated.


[1] Peeters, M.Y. et al. (2006) Anesthesiology 104 (3), 466-4743

[2] de Wildt, S.N. et al. (2003) Crit Care Med 31 (7), 1952-1958


Results

Using a 2 compartment PK model (figure 1), the simple model of the combined dataset without covariates (figure 2A) showed remarkable differences in clearance between the postoperative [1] and critically ill [2] children (figure 2B). The influence of bodyweight on clearance seemed to vary considerably between the two study populations (figure 2C).

2B Simple model: Influence of study factor

2C Simple model: Influence of bodyweight

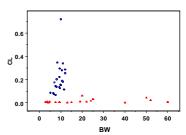


Figure 2. Simple model: 2A: diagnostic plot of population predicted versus observed concentrations; 2B: difference in clearance (L/hr) between the two study groups (study 1 and 2); 2C: Bodyweight (kg) versus clearance (L/hr) (2C). Colors: blue = study 1, red = study 2.

In the covariate analysis, a study factor added to clearance (table 2), as well as bodyweight as a covariate for clearance of midazolam for each of the two patient groups (table 2), all proved to significantly improve the model (figure 3, table 3). Clearance of midazolam was found to be reduced by 93% in critically ill children compared to postoperative children. The influence of bodyweight was linear in postoperative children, whereas an exponential scaling factor of 0.48 was found in critically ill children (table 3). Age and PELOD score were less predictive covariates for clearance compared to study factor and bodyweight.

3 Covariate model: Diagnostics		Table 3. Parameter values of the Covariate model.				
	Table 2. Covariate model	Parameter	Value	CV(%)	LLCI	ULCI
Observed	Study factor on clearance	Fixed Effects				
	° IF (STUDY.EQ.1) TVCL=THETA(1)	Cl (L/hr)	0.113	11.9	0.0867	0.139
	IF (STUDY.EQ.2) TVCL=THETA(1)*(1-THETA(2))	V ₁ (L)	0.647	33.1	0.228	1.07
	Bodyweight on clearance in study 1	Q _{eq} (L/hr)	0.0423	17.4	0.0279	0.0567
	TVCL*(BW/BW _{median})**THETA(3)	V ₂ (L)	4.62	1.3	3.05	6.19
	Bodyweight on clearance in study 2	Φ (study factor Cl)	0.932	1.89	0.898	0.966
		Φ (exponent BW study 1)	0.99	29.7	0.414	1.57
	TVCL *(BW/BW _{median})**THETA(4)	Φ (exponent BW study 2)	0.484	44.6	0.0606	0.907
	10.00	Interindividual Variability				
Population predicted	t of	ω ² (Cl)	0.398	38.4	0.0981	0.698
Figure 3. Covariate model: diagnostic plot population predicted versus observed cond		Residual error				
Colors: blue = study 1, red = study 2.		σ^2 (proportional)	0.493	11.2	0.385	0.601

Conclusion & Perspectives

In pediatric pharmacology, the emphasis is usually on the age-related influence on PK parameters. We show here that, similar to the adult population, other covariates (e.g. health state) should be quantified as well. More datasets including metabolites will be added to the PK and PD analysis, which will be followed by validation procedures, after which specific dosing guidelines will be developed.

