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Sleep

• Sleep is generally controlled by 2 opposing systems

• Separated in 3 specific states

• Mammals cycle between the 3 different states 
• circadian pattern

Promotes wakefulness

Promotes sleep

WAKE

REMNREM

Introduction
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Drug induced sleep fragmentation

• Sleep fragmentation
• Transitions between states increases
• Causes sleep disturbances

• Daytime sleepiness, insomnia, nightmares

• Drugs can induce sleep fragmentation
• Intended pharmacological action
• Side effect

• Characterisation of time course of transitions is important
• understand mechanism
• Screening of new compounds

WAKE

REMNREM

Introduction



4

complex data analysis 

Characterisation of sleep pattern 

• 3 different vigilance states 
• Identified using electroencephalography (EEG) 

and electromyography (EMG) activity

• Circadian sleep pattern 
• shows frequent transitions between the 3 states
• Likelihood of next state is function of current state

Introduction

multiple correlated states
Ref: [1]

[1]: Ivarsson et. al. European Journal of Pharmacology 522 (2005) 63–71
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How to analyse this dense and highly 
correlated data? 

Sleep fragmentation possess Markov property:
• present state depends on the past state
• given the present state, the future state is independent from 

the past state

Develop Markov model to assess sleep fragmentation
• Transition frequency, wake sleep
• Analyse this type of data in NONMEM
• Case study: compare drug effect on sleep 

• methylphenidate (powerful stimulant; Ritalin®) 
• new chemical entity (NCE)

Introduction
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Case study: dataset 

• Male Sprague Dawley rats (n=6-8 per group)

• Placebo controlled cross-over design
• Oral 3-30 mg methylphenidate
• Oral 2-40 mg NCE

• PK determined in satellite animals

• EEG and EMG recordings for 12h after dosing
• Sleep stage discriminator: allocate every 12 sec to state
• 5 min epoch: residence time in each state reported

data to be analyzed

Model development
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• Analysis can be computationally prohibitive
• dense and continuous data
• take into account the dependency between observations

1. 2 vigilance states were considered
2. Binarize data with 2.5 min as cut-off point

• Length of time awake ≤ 2.5 min: animal in SLEEP state 0
• Length of time awake > 2.5 min: animal in WAKE state 1

Model development

Can we reduce computational burden?

WAKESLEEP
5 min epoch: 
residence time in state
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Markov model
parameterisation

Parameterised by the intensities/rates of transition
u: rate of transitioning from WAKE SLEEP (“falling asleep”)
v: rate of transitioning from SLEEP WAKE (“waking up”)
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Regular Markov model
towards hidden Markov model

• “Regular” Markov model
• states can be directly observed from data (0,1)
• “what you see is what you get”

• In our case we binarized the data by selecting a cut-off 
point of 2.5 min
• Cut-off point selection classification may be incorrect
• observation might be set to 0 (sleep), while animal is truly awake

• Hidden layer
• The true state can not be directly observed from data (0,1)
• We can guess in which true state the animal is states are hidden

Model development

SLEEP WAKE
P01

P10

P00 P11

0 1



10

Markov model
transition probabilities

Hidden
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Time course of transitions
sleep wake

Results

• Observed individual time 
course

• Spike represents transition
• Spike up: wake sleep
• Spike down: sleep wake
• Flat line: no transition

• Different drug effect compared 
to placebo

• Methylphenidate: 
less spikes transitions 

• NCE:
more spikes transitions 

TAD (min) TAD (min)

TAD (min) TAD (min)

Placebo 30 mg methylphenidate

Placebo 40 mg NCE
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Drug effect
Potency and efficacy

• Drug effect on falling asleep and waking up
• Delay in drug effect on falling asleep
• Different drug effects

• Methylphenidate : negative Emax inhibition transitioning
• NCE : positive  Emax stimulation transitioning

• Type I error (P0) ≤ 0.05 and power (P1) ≥ 0.92
Results

Transition Compound EC50 (RSE)
nM

Emax (RSE) Teq,drug (RSE)
min

Type I and 
Power 

NCE 12 (2) 0.37 (0.06) 29 (2) P0 = 0.05
Methylphenidate 41 (4) -2.59 (0.37) 24 (5) P0 = 0.04

NCE 2.6 (1.0) 0.55 (0.07) P1= 0.92
Methylphenidate 288 (9) -0.71 (0.91) P1= 0.95

Sleep Wake

Wake Sleep
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Adequate description of the sleep fragmentation

• Frequency over time 
of animals in the 
WAKE state

• Plots are stacked

Model evaluation
Predictive check

Results
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Log ratio of intensities,
corrected for placebo

pos ratio: promote sleep
neg ratio: promote wakefulness

Is the drug promoting 
sleep or wakefulness?

• Both drugs show negative ratio promote wakefulness
• Dose dependency
• Max ratio methylphenidate (-2.6) = ± 5x max ratio NCE (-0.55)

placebodrug v
u

v
u

)log()log( −
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Summary

• A 2-state hidden Markov model was developed to assess 
drug-induced sleep disturbance
• Analysis of dense and correlated data in NONMEM
• Computational less prohibitive
• Misclassification errors were acceptable

• The complex sleep pattern was well captured
• Quantify differences in sleep fragmentation

• Methylphenidate:promote wake + increases residence time in a state
• NCE: promote wake + increases transitioning

• Provide insight underlying mechanism

Applied for screening NCE’s early in development

Discussion
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Further reading

NM code is included in this paper as supplementary material!
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