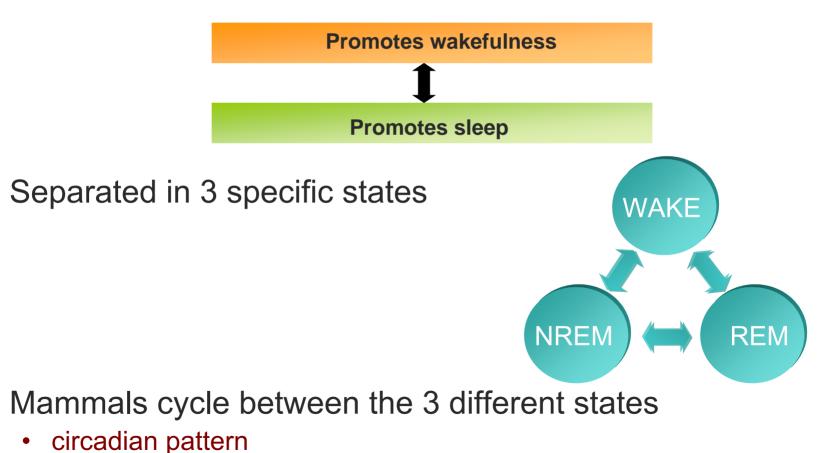

A hidden Markov model to assess drug-induced sleep fragmentation

June 7th 2012


Page meeting, Venice

Cheikh Diack , <u>Oliver Ackaert</u>, Bart Ploeger, Piet van der Graaf, Rachel Gurrell, Magnus Ivarsson, Dave Fairman

LEIDEN EXPERTS ON ADVANCED PHARMACOKINETICS AND PHARMACODYNAMICS

• Sleep is generally controlled by 2 opposing systems

Introduction

 ${}^{\bullet}$

Drug induced sleep fragmentation

- Sleep fragmentation
 - Transitions between states increases
 - Causes sleep disturbances
 - Daytime sleepiness, insomnia, nightmares

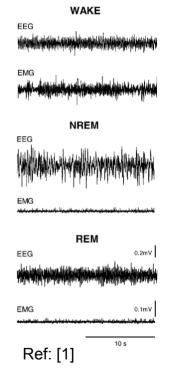
- Drugs can induce sleep fragmentation
 - Intended pharmacological action
 - Side effect
- Characterisation of time course of transitions is important
 - understand mechanism
 - Screening of new compounds

AP²

REM

WAKE

NREM



Characterisation of sleep pattern

- 3 different vigilance states
 - Identified using electroencephalography (EEG) and electromyography (EMG) activity
- Circadian sleep pattern
 - shows frequent transitions between the 3 states
 - Likelihood of next state is function of current state

multiple correlated states

complex data analysis

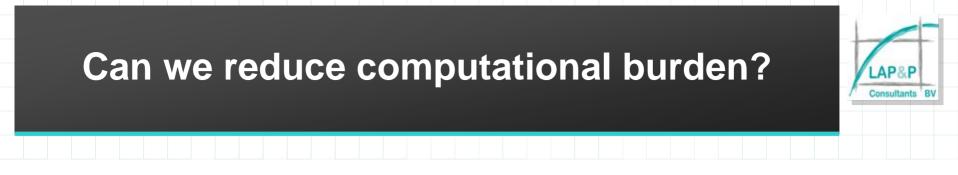
How to analyse this dense and highly correlated data?

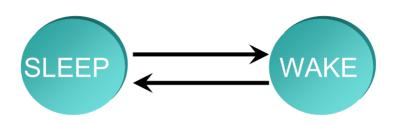
Sleep fragmentation possess Markov property:

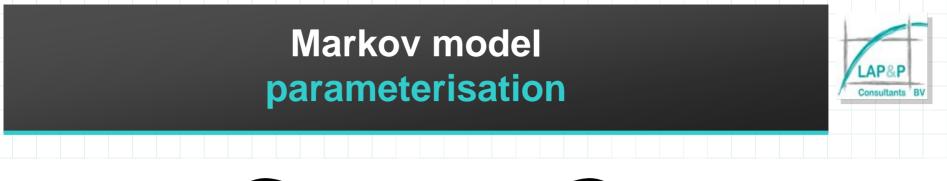
- present state depends on the past state
- given the present state, the future state is independent from the past state

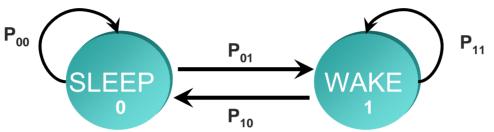
Develop Markov model to assess sleep fragmentation

- Transition frequency, wake ← → sleep
- Analyse this type of data in NONMEM
- Case study: compare drug effect on sleep
 - **methylphenidate** (powerful stimulant; Ritalin[®])
 - new chemical entity (NCE)


Case study: dataset


- Male Sprague Dawley rats (n=6-8 per group)
- Placebo controlled cross-over design
 - Oral 3-30 mg methylphenidate
 - Oral 2-40 mg NCE
- PK determined in satellite animals
- EEG and EMG recordings for 12h after dosing
 - Sleep stage discriminator: allocate every 12 sec to state
 - 5 min epoch: <u>residence time in each state</u> reported





5 min epoch: residence time in state

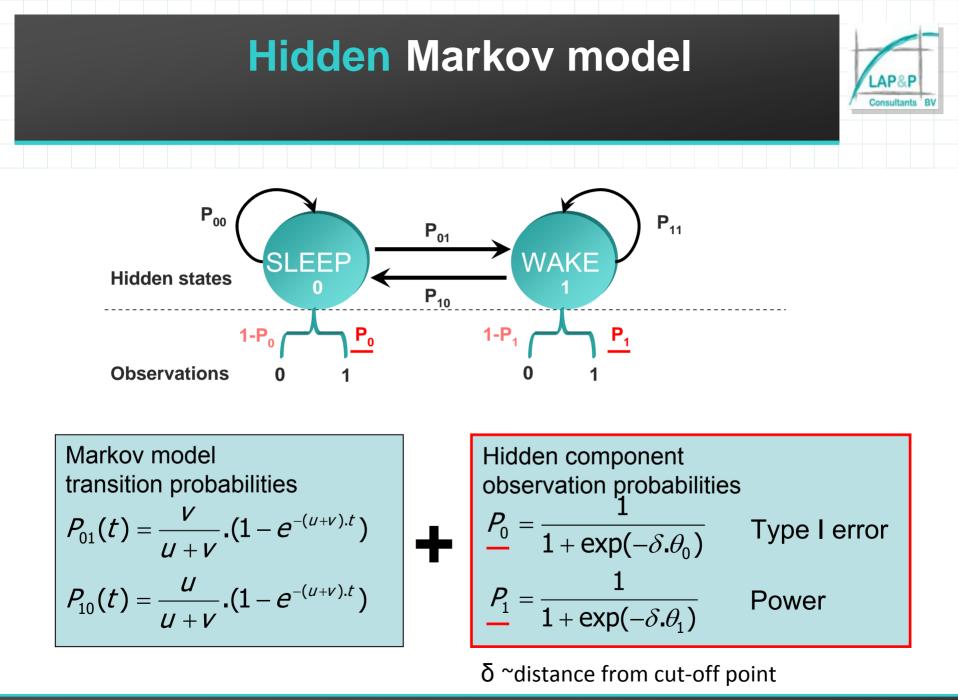
- Analysis can be computationally prohibitive
 - dense and continuous data
 - take into account the dependency between observations
- 1. 2 vigilance states were considered
 - 2. Binarize data with 2.5 min as cut-off point
 - Length of time awake ≤ 2.5 min: animal in SLEEP state
 - Length of time awake > 2.5 min: animal in WAKE state

Parameterised by the intensities/rates of transition

u: rate of transitioning from WAKE → SLEEP ("falling asleep") *v*: rate of transitioning from SLEEP → WAKE ("waking up")

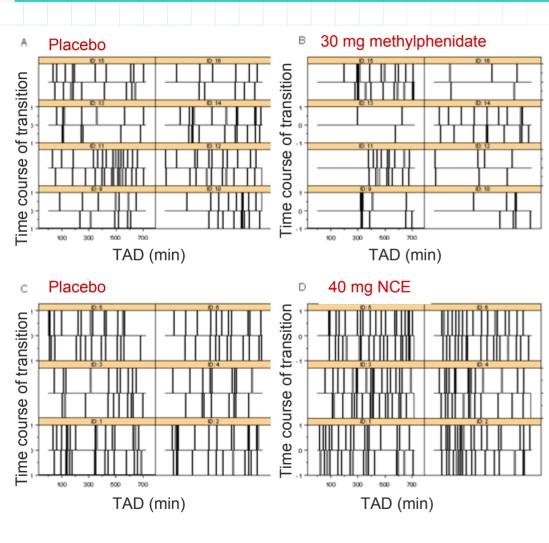
Transition probabilities over time interval t:

$$P_{01}(t) = \frac{V}{U+V} \cdot (1 - e^{-(U+V).t})$$
$$P_{10}(t) = \frac{U}{U+V} \cdot (1 - e^{-(U+V).t})$$


Drug effect $U = \exp(U_0 + Plac_u + Drg_u)$ $V = \exp(V_0 + Plac_v + Drg_v)$

Regular Markov model towards hidden Markov model

 $P_{00} \xrightarrow{P_{01}} P_{11}$ WAKE = 1 P_{11}

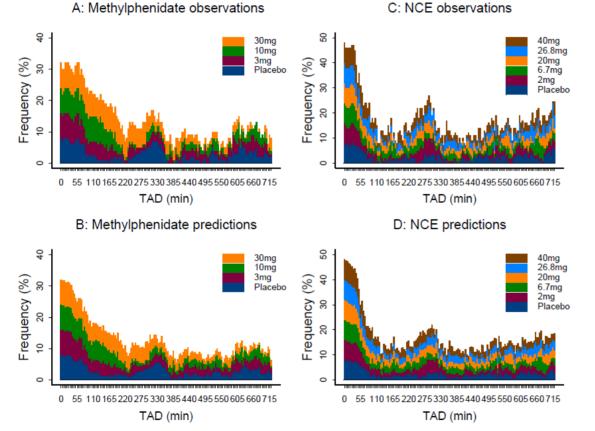

- "Regular" Markov model
 - states can be directly observed from data (0,1)
 - "what you see is what you get"
- In our case we binarized the data by selecting a cut-off point of 2.5 min
 - Cut-off point selection \rightarrow classification may be incorrect
 - observation might be set to 0 (sleep), while animal is truly awake
- Hidden layer
 - The true state can not be directly observed from data (0,1)
 - We can guess in which true state the animal is \rightarrow states are hidden

AP2.

Time course of transitions sleep ←→ wake

- Observed individual time course
- Spike represents transition
 - Spike up: wake → sleep
 - Spike down: sleep \rightarrow wake
 - Flat line: no transition
- Different drug effect compared to placebo
 - Methylphenidate:
 - less spikes \rightarrow transitions \downarrow
 - NCE:

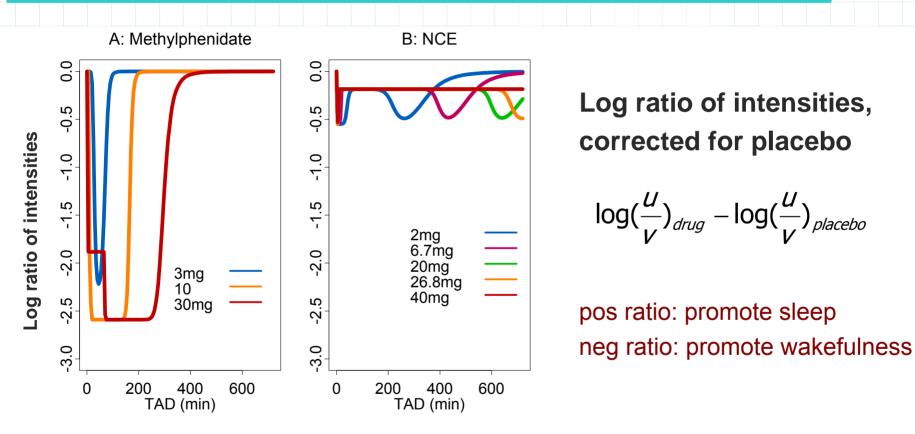
more spikes \rightarrow transitions \nearrow


Drug effect Potency and efficacy

Transition	Compound	EC ₅₀ (RSE) nM	E_{max} (RSE)	T_{eq,drug} (RSE) min	Type I and Power
Wake <mark>→Sleep</mark>	NCE	12 (2)	0.37 (0.06)	29 (2)	$P_0 = 0.05$
	Methylphenidate	41 (4)	-2.59 (0.37)	24 (5)	$P_0 = 0.04$
Sleep→Wake	NCE	2.6 (1.0)	0.55 (0.07)		P ₁ = 0.92
-	Methylphenidate	288 (9)	-0.71 (0.91)		P ₁ = 0.95

- Drug effect on falling asleep and waking up
- Delay in drug effect on falling asleep
- Different drug effects
 - Methylphenidate : negative $E_{max} \rightarrow$ inhibition transitioning
 - NCE : positive $E_{max} \rightarrow$ stimulation transitioning
- Type I error $(P_0) \le 0.05$ and power $(P_1) \ge 0.92$

Model evaluation Predictive check



• Frequency over time of animals in the WAKE state

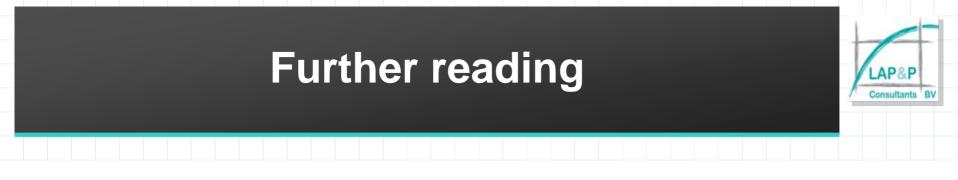
Plots are stacked

Adequate description of the sleep fragmentation

Is the drug promoting sleep or wakefulness?

- Both drugs show negative ratio \rightarrow promote wakefulness
 - Dose dependency
 - Max ratio methylphenidate $(-2.6) = \pm 5x$ max ratio NCE (-0.55)

AP²**P**



- A 2-state hidden Markov model was developed to assess drug-induced sleep disturbance
 - Analysis of dense and correlated data in NONMEM
 - Computational less prohibitive
 - Misclassification errors were acceptable
- The complex sleep pattern was well captured
 - Quantify differences in sleep fragmentation
 - Methylphenidate:promote wake + increases residence time in a state
 - NCE: promote wake + increases transitioning
 - Provide insight underlying mechanism

Applied for screening NCE's early in development

J Pharmacokinet Pharmacodyn (2011) 38:697–711 DOI 10.1007/s10928-011-9215-3

A hidden Markov model to assess drug-induced sleep fragmentation in the telemetered rat

C. Diack · O. Ackaert · B. A. Ploeger · P. H. van der Graaf · R. Gurrell · M. Ivarsson · D. Fairman

NM code is included in this paper as supplementary material!