

Disease progression in the integrated glucose-insulin model in subjects with impaired glucose tolerance

Siti M. S. Ghadzi^{1,2}, Mats O. Karlsson¹, Vanessa D. de Mello³, Matti Uusitupa³, Maria C. Kjellsson¹; Finnish Diabetes Prevention Study Group

¹Department of Pharmaceutical Biosciences, Uppsala University, Sweden ²Universiti Sains Malaysia, Malaysia ³Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio Campus, Kuopio, Finland

Conclusion

The disease progression was successfully included in the IGI model to describe differences seen in a population with IGT with or without lifestyle intervention. In particular, insulin dependent glucose clearance improved after intensive lifestyle intervention.

Objective

The objective of this project was to develop the IGI model to include disease progression in subjects with impaired glucose tolerance (IGT).

Introduction

The integrated glucose-insulin (IGI) model was published¹⁻³ describing glucose and insulin after various glucose provocations in healthy subjects and in patients with type 2 diabetes. However, this model currently does not include disease progression from prediabetes, i.e. impaired glucose tolerance, to overt diabetes, which is driven by decreased insulin sensitivity and relative beta cell failure.

Figure 2: IVGTT IGI Model Structure 1-3

CONTROL

MECHANISM

INSULIN

Methods

Figure 1: Finnish Diabetes Prevention Study

Study design

The data was obtained from the FDPS substudy as described in Figure 1. The subjects were middle-aged (mean age=53) and overweight (mean BMI=31.5) with IGT.

Modelling

The IGI model was used to fit FSIGT and OGTT data for baseline until the fourth year, incorporating prior information⁶ on the parameters.

Disease progression

The DP model was set to start at 24 hours after the end of baseline study period and was investigated on the pathophysiologically most reasonable parameters, e.g. insulin-dependent glucose clearance (CLGI), insulin first phase secretion (IFST), maximum incretin effect (EMAX) and effect of glucose on it's own production (GPRG).

The impact of diet and exercise intervention on the DP was investigated. The best model was chosen based on objection function value (OFV), diagnostic plots and visual predictive check (VPC).

(FDPS)^{4,5} Cumulative Year OGTT (ID=101) diabetes FSIGT (ID=87) dropout Control Intervention **OGTT OGTT** 0 **OGTT OGTT** 2 5 OGTT **OGTT** 14 OGTT (ID=70) 20 FSIGT (ID=52) Follow up

Glucose Glucose \absorption*|* Incretin effect on | *DP Glucose effect production production $(E_{max}) *DP$ ↓ K_{GE1} $\backslash BIO_G$ *DP Basal and Glucose — Glucose 1st phase -<u>-</u> > 2nd phase Dose effect on secretion secretion secretion Central Peripheral $\downarrow K_{GE2}$ glucose glucose Insulin Plasma Insulin first insulin effect on phase elimination *DP , K_{IE} → Insulin dose

Disease Progression (DP) = $1 \pm THETA(X) * Time (Year)$

Results and Discussion

FSIGT = Frequently Sampled Intravenous

Glucose Tolerance Test

OGTT = Oral Glucose Tolerance Test

Table 1: Effect of disease progression on IGI model parameters

Table 2: Selected parameter estimates differences between IGT, healthy and type 2 diabetes

Parameter	IGT**		Healthy ¹		Type 2 DM ^{2,3}	
	TV	IIV%	TV	IIV%	TV	IIV%
CLGI	0.00460	50.9	0.00829	53.0	0.00297	53.0
IFST	118	128	704	67.0	-	-
EMAX	1.78	17.7	0.0818*	21.0	1.47	55.0
CA50	14.1	136	-	-	14.8	114

Abbreviation: CLGI-Insulin-dependent glucose clearance (L/min/mU/L), **EMAX**-Maximal incretin effect(-), **CA50**-Absorbed glucose at 50% E_{max} (mg/dL), **IFST**-First phase insulin secretion (mU), **TV**- Typical value *linear incretin effect (mg/min) was used instead of Emax function

** The insulin-independent glucose clearance was fixed to the healthy value of

References

0.0287 L/min

- 1. Silber HE, Jauslin PM, Frey N, et.al. J Clin Pharmacol.. 2007;47:1159-1171.
- 2. Silber, HE, Frey, N, Karlsson, MO. *J. Clin. Pharmacol.* 2010. 50, 246–256.
- 3. Jauslin PM, Silber HE, Frey N, e al. *J. Clin. Pharmacol.*. 2007; 47: 1244-1255
- 4. Eriksson J, Lindstrom J, Valle T, et al. *Diabetologia*. 1999; 42:793-801.
- 5. Uusitupa M, Lindi V, Louheranta A, et al *Diabetes.* 2003;52:2532-2538.
- 6. Gisleskog PO, Karlsson MO, Beal SL. *J Pharmacokinet Pharmacodyn*. 2002;29(5):473-505.

Figure 3: Visual predictive checks (VPC) for Year 0 and 4

GLUCOSE

Overall, the model fit was good. The model overprediction the elimination phase of the glucose component for the fourth year FSIGT (control group) might be explained by the presence of feedback effect of insulin on glucose production, the low pre and post hepatic glucose production and the high endogenous and exogenous insulin secretion. The VPCs for yearly OGTT were not shown in the figure, but they were as good as IVGTT.

