An item response theory model with bounded integer subcomponents to describe the Mayo Clinic subscores in patients with ulcerative colitis

PAGE 2022, Ljubljana, June 29

Jurgen Langenhorst, Anita Moein, Sami Ullah, Matts Kågedal, Mats Magnusson, Nastya Kassir

Genentech involvement Anita Moein

Matts Kågedal

Nastya Kassir

Author disclosures

- Nastya Kassir, Anita Moein, and Matts Kâgedal are employees of Genentech and own Roche stocks
- Jurgen Langenhorst, Sami Ullah, and Mats Magnusson (MM) are and MM owns stocks in Pharmetheus

employees of Pharmetheus and paid consultants for Genentech, Inc.

Key messages

- binarizes a large quantity of longitudinal integer score data
- data adequately
- The IRT model can be used to improve model informed drug development (MIDD) in UC

• Remission in Ulcerative Colitis (UC) is a key clinical parameter, but it

• An item response theory (IRT) model with bounded integer item models is proposed as a more powerful alternative to the binarized approach

The IRT model described the analysis data and an external source of

MIDD case study

© Pharmetheus Confidential

UC is a severe disease of the gut, with a need of improved therapies

- UC is an inflammatory bowel disease affecting the colon and rectum 0
- 0 bleeding
- 0 increased rates of depression and risk of colon cancer
- Anti tumor necrosis factor (TNF) therapy has lead to stable induction of remission, but
 - A substantial number of patients have refractory disease
 - Anti-TNF therapy associates with significant side-effects

Patients suffer from a range of symptoms from persistent diarrhea to rectal

Long-term uncontrolled UC associates with severe consequences including

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data

Rectal bleeding (RB)

- 0: No blood seen 1: Streaks of blood 2: Obvious blood 3: Blood alone passed

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data

Rectal

- 0: No b
- 1: Strea
- 2: Obvi
- 3: Bloo

I bleeding (RB) lood seen aks of blood ous blood d alone passed	
	Stool frequency (SF)
	 0: Normal number of stools 1: 1-2 stools more than norma 2: 3-4 more stools than norma 3: ≥5 more stools than normal

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data

Recta

- 0: No b
- 1: Strea
- 2: Obvi
- 3: Bloo

Physi asse

- 0: Norn
- 1: Mild
- 2: Mode
- 3: Seve

I bleeding (RB) blood seen aks of blood ious blood d alone passed	
	Stool frequency (SF)
	 0: Normal number of stools 1: 1-2 stools more than normal 2: 3-4 more stools than normal 3: ≥5 more stools than normal
ician's global sment (PGA) nal disease erate disease ere disease	

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data Recta 0: No b 1: Strea 2: Obvi 3: Bloo Endoscopy (END) 0: Normal or inactive disease 1: Mild disease 2: Moderate disease 3: Severe disease Phys asse 0: Norn 1: Mild 2: Mode 3: Seve 10

I bleeding (RB) blood seen aks of blood ious blood d alone passed	
	Stool frequency (SF)
	 0: Normal number of stools 1: 1-2 stools more than normal 2: 3-4 more stools than normal 3: ≥5 more stools than normal
ician's global sment (PGA) nal disease erate disease ere disease	

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data **Rectal** 0: No b 1: Strea 2: Obvi 3: Bloo Mayo clinic Endoscopy (END) sum o 0: Normal or inactive disease 1: Mild disease 2: Moderate disease 3: Severe disease Physi asse 0: Norn 1: Mild 2: Mode 3: Seve 11

l bleeding (RB) blood seen aks of blood ous blood d alone passed	
score (MCS, 0-12):	Stool frequency (SF)
Tairsubscores	 0: Normal number of stools 1: 1-2 stools more than normal 2: 3-4 more stools than normal 3: ≥5 more stools than normal
ician's global sment (PGA) nal disease erate disease ere disease	

Remission in UC is a key clinical parameter, but effectively binarizes a large quantity of longitudinal integer score data Rectal 0: No b 1: Strea 2: Obvie 3: Blood Mayo clinic **Endoscopy (END)** sum o 0: Normal or inactive disease Remissio 1: Mild disease 2: Moderate disease All su 3: Severe disease Physi

- asse 0: Norm
- 1: Mild
- 2: Mode
- 3: Seve

bleeding (RB) lood seen aks of blood ous blood d alone passed	
score (MCS, 0-12): f all subscores	Stool frequency (SF)
on (yes/no, 1/0): /CS < 3 Ibscores < 2 RB of 0	 0: Normal number of stools 1: 1-2 stools more than normal 2: 3-4 more stools than normal 3: ≥5 more stools than normal
ician's global sment (PGA) nal disease erate disease ere disease	

Proposed MIDD solution

An IRT model with bounded integer item models is proposed to model four UC efficacy subscores simultaneously

A typical IRT model for such data

Proportional odds models with discrimination parameter describing the item (i.e. subscore characteristics

> Each item model needs N_{categories} parameters (4)

> > A latent variable that links the item models

Increasing latent variable
increasing probability of higher scores

Each subscore/item and derived parameter can be predicted at any timepoint

n e)			

An IRT model with bounded integer item models is proposed to model four UC efficacy subscores simultaneously

A typical IRT model for such data

Proportional odds models with discrimination parameter describing the item (i.e. subscore characteristics

> Each item model needs N_{categories} parameters (4)

> > A latent variable that links the item models

Increasing latent variable
increasing probability of higher scores

Each subscore/item and derived parameter can be predicted at any timepoint

	The proposed model
n e)	Bounded integer models describing the subscore/item characteristics

Each item model needs 2 parameters, regardless of N_{categories}

The IRT model is partitioned in item-specific parameters and a latent disease model

RB-score observations

RB-score-specific:

BASE_{RB} SD_{population,RB}

SF-score observations

SF-score-specific:

BASE_{SF} $\mathsf{SD}_{\mathsf{population}},\mathsf{SF}$

PGA-score-specific:

BASE_{PGA} SD_{population},PGA

PGA-score observations

© Pharmetheus

The IRT model is partitioned in item-specific parameters and a latent disease model

RB-score observations

RB-score-specific:

BASE_{RB} SD_{population,RB}

SF-score observations

SF-score-specific:

BASE_{SF} SD_{population},SF

PGA-score-specific:

BASE_{PGA} SD_{population},PGA

PGA-score observations

© Pharmetheus

 $\mathbf{O} \bullet \bullet \bullet \bullet$

The IRT model is partitioned in item-specific parameters and a latent disease model

RB-score observations

RB-score-specific:

BASE_{RB} SD_{population,RB}

Latent disease model, shared parameters:

TRT_{EFF} SD_{individual}

SF-score observations

SF-score-specific:

BASE_{SF} SD_{population},SF

PGA-score-specific:

BASE_{PGA} SD_{population},PGA

PGA-score observations

Data available

UC TNF-NAIVE

HIBISCUS I & II

NCT02163759 & NCT02171429 Randomized 2:2:1 (GA28948 & GA28949) N = 350 each 2 induction trials: Etrolizumab vs adalimumab vs placebo

LAUREL

OLI Cohort NCT02165215 N = 359 (GA29102) 1 maintenance trial: Etrolizumab vs placebo

UC EXP

HICKORY

NCT02100696 (GA28950) 1 induction/maintenance trial: Etrolizumab vs placebo

OLI Cohort N = 130

Blinded

Cohort

N = 609

Randomized 4:1

Blinded

ETRO

ETRO

ETRO

ADA

PBO

ETRO

PBO

heet.

0

UC TNF-NAIVE

HIBISCUS | & II

NCT02163759 & NCT02171429 Randomized 2:2:1 (GA28948 & GA28949) 2 induction trials: Etrolizumab vs adalimumab vs placebo

LAUREL

OLI Cohort NCT02165215 N = 359 (GA29102) 1 maintenance trial: Etrolizumab vs placebo

UC -

HICKORY

NCT02100696 (GA28950) 1 induction/maintenance trial: Etrolizumab vs placebo

OLI Cohort N = 130

Blinded

Cohort

N = 609

Randomized 4:1

Blinded

N = 350 each

ETRO

ETRO

ETRO

AXA

PBO

ETRO

PBO

heet.

0

UC TNF-NAIVE

HIBISCUS I & II

NCT02163759 & NCT02171429 Randomized 2:2:1 (GA28948 & GA28949) 2 induction trials: Etrolizumab vs adalimumab vs placebo

LAUREL

OLI Cohort NCT02165215 N = 359 (GA29102) 1 maintenance trial: Etrolizumab vs placebo

UC -

HICKORY

NCT02100696 (GA28950) 1 induction/maintenance trial: Etrolizumab vs placebo

OLI Cohort N = 130

Blinded

Cohort

Randomized 4:1

Blinded

N = 350 each

ETRO

ETRO

ETRO

AXA

PBO

ETRO

PBO

UC TNF-NAIVE

HIBISCUS I & II

NCT02163759 & NCT02171429 Randomized 2:2:1 (GA28948 & GA28949) 2 induction trials: Etrolizumab vs adalimumab vs placebo

LAUREL

NCT02165215 **OLI** Cohort N = 359 (GA29102) 1 maintenance trial: Etrolizumab vs placebo

UC -

HICKORY

NCT02100696 (GA28950) 1 induction/maintenance trial: Etrolizumab vs placebo

OLI Cohort N = 130

Blinded

Cohort

N = 609

Randomized 4:1

Blinded

N = 350 each

ETRO

ETRO

ETRO

AXA

PBO

ETRO

PBO

0

External evaluation data consisted of placebo data from five trials of various drug companies: "TransCelerate" data

Study NCT	Company	Design	Anti-TNF therapy status	N subjects
NCT00385736	Abbvie	8 week induction	Only Naïve	222
NCT00408629	Abbvie	8 week induction + 44 week maintenance	Naïve and experienced	256
NCT00410410	BMS	12 week induction + 40 week maintenance	Mostly Naïve, but some experienced	135
NCT00787202	Pfizer	8 week induction	Mostly Naïve, but some experienced	46
NCT00853099	Abbvie	8 week induction + 44 week maintenance	Only Naïve	96

All subscores look similar except for SF that was lower for the analysis data

Placebo analysis data

Transcelerate data

95% CI of the mean score Mean score

Evaluation of the suitability of the solution

The analysis subscore data were well predicted by the model

90% CI of mean simulations Mean of observed

The external data were mostly well predicted by the model, though SF was underpredicted for several studies

90% CI of mean simulations Mean of observed

© Pharmetheus Confidential

The derived key endpoint "remission" at end of induction in the external data was well captured by the model, except for study NCT00787202

© Pharmetheus Confidential

MIDD applications

The proposed IRT model can be used to improve MIDD in UC

- Currently, decisions during drug development are mainly based on remission status at the end of treatment
 - Only 1 observation of 1 or 0 per subject
 - Difficult to impute missing data (e.g. interim analysis)
 - No possibility to extrapolate remission to other times

Using the proposed model would leverage all key efficacy data 0

- Longitidunal data of 0, 1, 2, 3
- Allow predictions of missing individual subscore data Possibility to simulate remission at unobserved time points

Key messages

- Remission in UC is a key clinical parameter, but it binarizes a large quantity of longitudinal integer score data
- data adequately
- The IRT model can be used to improve MIDD in UC

• An item response theory (IRT) model with bounded integer item models is proposed as a more powerful alternative to the binarized approach

The IRT model described the analysis data and an external source of

Back-up slides

© Pharmetheus Confidential

Underprediction of remission in NCT00787202 is mainly due to lower rectal bleeding scores

Other studies NCT00787202

95% CI of the mean score Mean score

The model behavior visualized

Assumptions

Assumption	Consequence of violation	Evaluation method
Each score is impacted the same by the treatment effect (IRT)	The model mispredicts the score for which this assumption doesn't hold	VPC per score for population leve
		IPRED vs DV for individual level
Each score adds equally unique information (IRT)	Shared information across a subset of scores increases the weight of those scores that share the information	VPC per score may show misspecifcation for certain score due to increased weight of other scores.
The probability of a non-extreme score is larger than at least one of the nearest adjacent scores (B)	Could pose a problem if the distribution of scores is for some reason not unimodal (e.g. 1 and 3 are much more common than 0 and 2)	VPC per fraction of score over time

