Steady-state Equation for the Bicompartmental Model with Gamma Absorption. Application to Mycophenolate PK in Renal Transplant Patients

M. Tod (1), B. Blanchet (2), A. Astier (2), A. Hulin (2)

(1) Laboratory of Toxicology, CHU Cochin, Paris, France, (2) Laboratory of Pharmacology, CHU Henri Mondor, Créteil, France

BACKGROUND

The bicompartmental model with gamma-distributed absorption nes is a useful empirical model for drugs whose absorption kinetics is not zero- or first-order. We derived for this model a steady-state equation involving one parameter less than the previous derivation (1). The equation involves the incomplete gamma function P. An approximatio (based on equivalence with a chi-squared distribution) is proposed in order to facilitate its implementation in NONMEM

OBJECTIVES

MATERIALS AND METHODS

ndividual narameters

Parameter Distribution:

Residual error model :

Steady times:

where

and

NMTRAN.

(Step 1) Use the equivalence: $P(nu,x) = p(\chi^2(2.nu) < 2.x)$

(Step 2) Use the approximation:

 $p(\chi^2(nu) < x) = f(A / B)$ where

V. = volume of central compartment

s = shape parameter of gamma distribution

Ka = absorption rate constant K21 = rate constant peripheral to central

HPLC.

To compare the population estimates obtained with NONMEN (approximate equation for P) and MONOLIX (no approximation for P) or real data.

Study design : 77 adult renal transplant patients treated with tacrolimus and mycophenolate, 3 to

4 blood samples per occasion (114 occasions, 594 concentrations), median time between

transplant and sampling dates 37 d, IQR 12 to 377 d, mycophenolate concentrations measured by

was a two- compartment model with gamma-distributed absorption times

 λ_1, λ_2 = eigenvalues = slopes of phase 1 (rapid) and phase 2 (slow)

multivariate lognormal.

Cobs = Cpred + g.Cpred^{0.5}

Parameters were estimated by using MONOLIX 1.1 and NONMEM VI (FOCE method).

 $\mathbf{C}(t) = \mathbf{Co}(t) + \mathbf{C}_1(t) \cdot \exp(-\boldsymbol{\lambda}_1 t) + \mathbf{C}_2(t) \cdot \exp(-\boldsymbol{\lambda}_2 t)$

 $Co(t) = C_{1}(Tau) \cdot \frac{exp(-\lambda_{1},t)}{exp(\lambda_{1},Tau) - 1} + C_{2}(Tau) \cdot \frac{exp(-\lambda_{2},t)}{exp(\lambda_{2},Tau) - 1}$

Computation of the incomplete gamma function P(nu,x) in NONMEM: the hard way

Use a Fortran subroutine for P(). Call this subroutine from \$PRED via verbatim code

Computation of the incomplete gamma function P(nu,x) in NONMEM: the tricky way

 $C_{1}(t) = \frac{D}{V_{1}} \left(\frac{K_{21} - \lambda_{1}}{\lambda_{2} - \lambda_{1}} \right) \left(\frac{Ka}{Ka - \lambda_{1}} \right)^{s} P[s, (Ka - \lambda_{1}).t]$

 $C_{2}(t) = \frac{D}{V_{1}} \left(\frac{K_{21} - \lambda_{2}}{\lambda_{1} - \lambda_{2}} \right) \left(\frac{Ka}{Ka - \lambda_{2}} \right)^{s} P[s, (Ka - \lambda_{2}).t]$

In NONMEM, these equation are coded in \$PRED: no verbatim code

In MONOLIX, a very accurate built-in function is used for P().

acokinetic analysis : The data were analyzed by a population approach. The final mode

state equations for the two- compartment model with gamma-distributed absorption

ent: the derivatives of the model have to be written in the PRED routine generated b

i.e. the probability that χ^2 with 2nu d.f. is less than 2x

 $A = (x / nu)^{1/3} + (2 / 9nu) - 1$ and $B = (2 / 9nu)^{1/2}$ f(A / B) = 1 / [1 + exp(- h(A / B))] $h(\frac{A}{B}) = \frac{A}{B}(1.59145 + 0.01095 \frac{A}{B} + 0.06651 \left(\frac{A}{B}\right)^2)$

 $SD(\varepsilon) = \sigma$

_								
	RESULTS AND DISCUSSION		Table I : MONOLIX estimates			Table II: NONMEM estimates		
n s	Accuracy of the approximation : See fig 1. The 95th percentile of relative prediction error is ~ 1%.	Parameter	Median (SE)	Interindividual CV (%)	Parameter	Median (SE)	Interindividual CV (%	
e	Comparison of population parameter estimates: See Table I and II. MONOLIX is similar to NONMEM with FOCE INTERACTION and full	V ₁ (L)	33.7 (1.2)	50	V ₁ (L)	33.6 (3.8)	40	
n	covariance matrix but NONMEM convergence could not be reached	λ_2 (h ⁻¹)	0.0414 (0.0017)	77	λ_2 (h-1)	0.0451 (0.0042)	45	
"	with these settings. Therefore, differences in parameter estimates	λ_{1} (h ⁻¹)	2.69 (0.02)	21	λ ₁ (h-1)	3.41 (0.4)	13	
N	Nevertheless, PREDs were similar for both approaches (fig 2). Data	Ka (h⁻¹)	7.57 (0.91)	296	Ka (h-1)	7.18 (0.67)	153	
	and typical profile are shown fig 3.	s o	5.39 (0.46) 0.40 (0.06)	-	s a	5.11 (0.55) 0.51 (0.04)	-	
	Goodness of fit : See fig 4. Prediction discrepancies did not reveal any lack of fit.	Cova	Covariances also estimated (not shown)		Covariances fixed to zero, FOCE NO INTERACTION			

Fig. 4. Prediction discrepancies with MONOLIX

CONCLUSIONS

The proposed approximation for the incomplete gamma function is reasonably accurate and allows a simp implementation in NONMEM, avoiding the code of model derivatives.

A new formulation of the steady-state equation for the two-compartment model with gamma-distributed absorption time has been derived.

This model may be useful when absorption kinetics is not simply zero or first order

REFERENCES

1. Premaud A, Ther Drug Monit. 2005;27:354-361.

2. Press WH, Numerical recipes in C, Cambridge University Press, 1992.

3. Rade L, Mathematics Handbook, Springer, 1999.