TARGET MEDIATED DRUG DISPOSITION MODEL TO DESCRIBE THE EXPRESSION AND KINETICS OF IL12 AND IFNY IN GENE THERAPY

Zinnia Parra Guillén⁽¹⁾, Rubén Hernández-Alcoceba⁽²⁾, Gloria González-Aseguinolaza⁽²⁾, Pedro Berraondo⁽²⁾, Iñaki F. Trocóniz⁽¹⁾

° mic

10

31*

12

21*

2.5

1

1

1

1

1

1

1

Introduction

Interleukin-12 (IL-o) has shown to have a great therapeutical potential in the treatment of chronic hepatic diseases [1]. Nevertheless its in vivo efficacy is hampered by a negative feedback mediated by the interferon y (IFNy) produced in response to this cytokine [2].

A model able to describe the relationship between IL₁₂ and IFNY has already been developed when constant doses of Mifepristone (RU, inductor of the gene expression of IL₁₂) were administered [3]. The aim of the study is to challenge an improved the previously developed model when increasing doses of the Mifepristone are administered under different dosing regimes

Methodology

I. Animal Experimentation

Wild type mice were infected with two different doses (DNA=1 or DNA=2.5) of gutless adenoviral vectors containing a Mifepristone (RU) -inducible system for liver-specific expression of interleukin-12. Daily induction of constant or increasing doses of RU (Table I) was performed and levels of IL12 and IFNy were measured.

II. Mathematical Model

I. Mathematical Model

 $\frac{dRU}{dRU} = DOSE - \beta \times RU$

 $Ct = IL_{12} + R_{IL12}IL_{12}$

 $= K_{SH}$

 $Rt = R_{IL12} + R_{IL12}IL_{12}$

dCt

9

-

42

5

LOG IFNg (np/mL)

LOG IL12 (pg/mL)

di

Data from Treatments (TTO) 0-5 (Table I) were used to develop a kinetic-pharmacodynamic model (Figure 1).The quasi-equilibrium model proposed by Mager *et al.*[4] was implemented and a K-PD [5] an Emax model was introduced to account for Mifepristone kinetic and its effect over IL12. Non parametric bootstrap was performed to calculate the 90% confidence interval of parameter estimates

 $SLRU \times RU \times DNA$

 $\overline{(RU+RU}50) \times \left(1 + \frac{REG}{IC/1000}\right)$

LOG IL12 (pg/mL)

LOG IL12 (pg/mL)

_

 $\frac{dRt}{dt} = K_{SYN} - K_{DEG} \times (Rt - Ct + IL_{12}) - K_{INT} \times (Ct - IL_{12})$

 $IL_{12} = \frac{1}{2} \times \left[(Ct - Rt - K_D) + \sqrt{(Ct - Rt - K_D)^2 + 4 \times Ct \times K_D} \right]$

 $\frac{dIFN\gamma}{dIFN} = K_{SIF} \times (R_{IL12} - R_{IL12} - 0) - K_{DIF} \times IFN\gamma$

 $\frac{dREG}{dREG} = K_{REG} \times IFN\gamma - K_{REG} \times REG$

II. Internal Validation

 $-K_{INT} \times (Ct - IL_{12})$

and m

IL12 (pg/mL)

00

(Jm/ar

OG FNg

represents the 90% prediction interval, black

50

9

10

10

Time(days)

nt. Grey shadow

Time(days

ematical ec

ons of the

model. Ct: total an

10

Time(days

Time(days)

line the predic

III. Internal validation

Visual Predictive Checks (VPCs) were performed: 1000 simulated individuals, for each of the treatment groups (TTO) included in the analysis, were obtained and 5th, 50th and 95th percentiles were calculated and plotted against the observed data

IV. External validation

The model developed was used to simulate the dosing protocols not included in the analysis (TTO 6 and 7). VPCs were used to evaluate the validity of the model

Berkeley-Madonna, R and NONMEM VII and PsN softwares were used to develop the model

Results

Table I: Summary of the different experimental protocols

RU Dose (times)

250 (10)

250 (10)

500(10)

125(2)/250(3)/500(3)/1000(3)

TTO

0

2

1

3

Parameter (units)	Estimate (5th-95th)
IL ₁₂ 0 (pmol)	0.0043 (0.00294 - 0.00636)
K _D (pmol/day)	0.0451 (0.02089 - 0.1423)
SLRU	130 (62.43 - 404)
K _{SIF} (day-1)	0.0821 (0.04168-0.2441)
K _{DIF} (day ⁻¹)	1.61 (0.5622-3.193)
K _{DEG} (day-1)	6.33 (3.378 - 8.56)
K _{INT} (day-1)	1.44 (0.7781 - 7.011)
R _{IL12} 0 (pmol)	1 FIX
IC (pmol)	0.00384 (0.00017-0.00611)
K _{REG} (day ⁻¹)	1.36x10 ⁻⁵ (1.38x10 ⁻⁶ -2.09x10 ⁻⁵)
β (day-1)	3.3 FIX [6A]
RU50(pmol)	71200 (38340 -200100)
Residual Error IL12 (log(ng))	2.25 (1.43-3.42)
Residual Error IFNy	0.0228 (0.01608-0.02994)

III. External Validation

Fig 3. VPCs of the stud . Grey shadow represents the 90% nts corresponds to IFN γ and IL₁₂ interval, black line the predicted ons (purple and green respectively) dian and the po

Conclusions

A kinetic- pharmacodynamic model able to describe jointly the $\rm IL_{12}$ and IFNy profiles has been developed by introducing the target mediated drug disposition quasi-equilibrium model to account for the observed dose dependent disposition of IL_{12}

The different experimental protocols with increasing doses of RU were satisfactorily described by incorporating a monoexponential decay of RU and an Emax model to describe its effect over IL12 gene expression.

References

[1]Berraondo P et al. Curr Gene Ther 9:62-71. 2009

[2] Reboredo M et al. Gene Ther 15:277-288, 2008.

[3] Parra-Guillén et al. PAGE 19 (2010) Abstr 1899 [www.pagemeeting.org/?abstract=1899]

[4] Mager DE et al. J Pharmacokinet Pharmacodyn 28: 507-532

[5] Jacqmin P et al. J Pharmacokinet Pharmacodyn 34: 57-85

[6] Babij P et al. Biochim. Biophys Acta 1627: 15-25,

10

Fig 2. VPCs of some of the studies included in the model development. points corresponds to IFNy and $\rm IL_{12}$ observations (purple and green resp

Time(days)