
A new implementation QRPEM of EM importance sampling-based 

NLME estimation has been implemented in the Phoenix NLME 

application on the Pharsight Phoenix software platform.   The 

method differs from stochastic MCPEM versions in that it samples 

the relevant integrands at positions that are based on quasi-random 

points rather than random points.  

For a d-dimensional problem with d random effects, the initial  

samples are drawn from a Sobol QR sequence uniformly covering the 

unit hypercube [0,1]d .  These are transformed to QR N(0,I) 

Gaussians by component-wise application of a inverse cumulative 

normal distribution function, and then scaled and shifted to the 

target N(m,C) importance sampling distribution. 

 

DISCUSSION / CONCLUSIONS 

On the MONOLIX test set described in Ref. [2] with 144 one- and two-
compartment models with linear and Michaelis-Menten elimination:  
 
NM FOCEI and Phoenix FOCE ELS both fail on approximately 40% of cases, 
 
QRPEM successfully solves all 144 cases with good parameter estimates, and 
 
QRPEM is 2 to 5 times faster than NM MCPEM ($EST METHOD=IMP) at the same 
sample sizes and iteration counts on this test set .    
    

QRPEM is essentially unbiased over 100 simulated data sets for a difficult, sparse, highly nonlinear 
PD EMAX model with Hill coefficient g, whereas FOCEI shows significant bias (%bias) in some 
parameters. Model was adapted from Ref. [1].  Values shown are average FOCEI and QRPEM 
estimates over 100 data sets.  
 
  PARAMETER     TRUE VALUE        FOCEI              QRPEM 
 
  tvE0   5.00           5.00 (0)            5.01(+0.2)                             
  tvEMAX                   30.00         26.6(-13)          29.6(-1) 
  tvED50                500            521(+4)            496(-1) 

g                3.00     2.66(-10)          3.02(+1) 
   resid err stddev     0.1     0.128(+28)       0.103(+3) 
                          Omega(1,1) 0.09     0.088(-2)          0.089(-1) 
                          Omega(2,2) 0.49     0.48(-2)            0.48(-2) 
                          Omega(3,2)            0.25     0.18(-28))         0.25(0) 
                          Omega(3,3) 0.49     0.42(-14)          0.47(-4) 

    INTRODUCTION 

Monte Carlo (MC) parametric EM algorithms such as MCPEM and SAEM are 

attractive alternatives to approximate likelihood FO, FOCE, and LAPLACE 

parametric algorithms.  EM algorithms avoid likelihood approximations 

that compromise the statistical quality of the results.  Also, in practice 

EM methods are usually much more reliable than approximate likelihood 

methods since they rely on numerically very robust sampling and 

numerical integration computations rather than relatively fragile 

numerical optimization procedures. 

Recently QRPEM (quasi-random parametric EM), a new implementation of 

an importance sampling based EM algorithm, has been added to the 

Pharsight Phoenix® NLME™ software.   QRPEM differs fundamentally from 

MCPEM algorithms in that importance sampling of the posteriors is based 

on quasi-random (aka ‘low discrepancy’) sequences rather than the more 

usual pseudo-random sequences used in Monte Carlo methods.   

A second major innovation in QRPEM is the use of the SIR (sampling-

importance-resampling) algorithm to greatly simplify and accelerate the 

auxiliary optimization  procedure that must be used when some fixed 

effect and residual error parameter updates cannot be driven directly 

from the base EM posterior means.  Such cases include, for example, 

fixed effects not paired with a random effect, non-linear covariate 

models, and mixture parameters in compound additive-proportional 

residual error models.  

. 

 

 

e) QRPEM is far more reliable than FOCE and f) QRPEM is  

much faster than NM MCPEM on a large Monolix test set: 

GAUSSIAN RANDOM vs. QUASI-RANDOM 

IMPORTANCE SAMPLES 

OBJECTIVE 

To improve the performance of the MCPEM algorithm through the use of quasi-

random sampling  for increased EM integral accuracy and the SIR algorithm for 

increased efficiency in the estimation of fixed effects and residual error 

parameters than cannot be estimated by the base EM algorithm. 

METHODS 

QRPEM, A Quasi-Random Parametric EM Method 
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QR integral error (blue curve) decays 
much faster at rate O(N-1) than MC 
integral error (red curve) at rate 
O(N-1/2). Thus QRPEM integrals are 
far more accurate than MCPEM at 
the same sample size N. 

Log likelihood (y-axis) convergence 
with increasing iteration count (x-axis) 
is much smoother, more monotonic, 
and more accurate with QRPEM (blue) 
than MCPEM (red) at same sample size. 
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For a difficult, nonlinear EMAX PD 
model with Hill coefficient=3.0, QRPEM 
(red curve) converges to true ML 
solution much faster than MCPEM (blue 
and black). QRPEM solution at low 
sample size N=100 is far superior to 
MCPEM at N=100. Due to  use of SIR, 
QRPEM is 8 times faster (400 sec vs. 
3200 sec) than MCPEM without SIR 
(black) at same sample size (1000) and 
iteration count (100).  
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For a linear model with additive 
residual error, FO and FOCE produce 
true maximum likelihood estimates 
(green  line).  QRPEM method (red 
curve ) reaches true ML values at 
much smaller sample sizes (N=200) 
than MCPEM methods (N=4000). 

d) QRPEM is less biased than FOCEI on a highly 
nonlinear PD test case from the literature: 
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RESULTS AND CONCLUSIONS 

a) QRPEM EM integrals are more accurate than MCPEM, b) QRPEM converges to 
the true ML solution at lower sample sizes than MCPEM, c) SIR greatly improves 
performance when applicable 


