30th PAGEmeeting

Ljubljana • Slovenia 28 June – 1 July 2022

Longitudinal biomarkers predicting death of hospitalized patients for SARS-COV-2 infection: a joint analysis with competing risks

Alexandra Lavalley-Morelle^{*1}, Xavier Lescure^{1,2}, Nathan Peiffer-Smadja^{1,2}, France Mentré^{1,3}, Jimmy Mullaert^{1,3}

*alexandra,lavalley-morelle@inserm.fr 1 Université Paris Cité, UMR 1137 IAME, INSERM, F-75018 Paris, France 2 Department of Infectious and Tropical Diseases, AP-HP, Bichat-Claude Bernard University Hospital, F-75018 Paris, France 3 Department of Epidemiology, Biostatistics and Clinical Research, AP-HP, Bichat-Claude Bernard University Hospital, F-75018 Paris, France

30/06/2022

Introduction ● O	Methods 0 0 0 0 0 0 0 0	0	Results 0 0 0 0 0 0 0	Discussion O
Context				
00000000000000000000000000000000000000			JANUARY FEBRUARY MARCH APPIL	Thousands of cases
Sun Mon Tue Wed Thu Fri Sat 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Start of the COVID-19 pandemic		MAY JUNE JULY AUGUST	Saturation of intensive care units and emergency departments

- **Personalized predictions** of the survival of hospitalized patients for SARS-COV-2 infection can be useful:
 - To streamline therapeutic alternatives (escalation or limitation of care)
 - To improve hospital organization (beds, staff...) and forecast needs

ntroduction M ● 0 0	ethods 0 0 0 0 0 0 0	Results 0 0 0 0 0 0 0	Discussion O
Context			
Sun Mon Tue Wed Thu Fri Sat Start of the COVID-19 pan	demic	LANUARY FEBRUARY MARCH APRIL MARCH JUNE JULY AUGUST	Thousands of cases Saturation of intensive care units and
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		SEPTEMBER OCTOBER NOVEMBER DECEMBER	emergency departments

- **Personalized predictions** of the survival of hospitalized patients for SARS-COV-2 infection can be useful:
 - To streamline therapeutic alternatives (escalation or limitation of care)
 - To improve hospital organization (beds, staff...) and forecast needs
- Since 2020, prognostic **scores**^{1,2,3} have been developed using clinical characteristics available at hospital admission

4C-score¹ includes baseline characteristics (age, gender, comorbidities) and baseline biomarker measurement (admission CRP, urea,...)

Introduction	Methods	Results	Discussion
0 •	0000000	000000	0

Context

• **Clinical studies** described association between prognosis and baseline biomarker measurements^{4,5,6}, or biomarkers changes between different days^{7,8,9}

Mueller et al. Inflammatory Biomarker Trends Predict Respiratory Decline in COVID-19 Patients, Cells Reports Medicine, 2020

Introduction	Methods	Results	Discussion
0 •	0000000	000000	0

Context

Clinical studies described association between prognosis and baseline biomarker measurements^{4,5,6}, or biomarkers changes ٠ between different days^{7,8,9}

Mueller et al. Inflammatory Biomarker Trends Predict Respiratory Decline in COVID-19 Patients, Cells Reports Medicine, 2020

None of them consider **the full** follow-up of biological information until clinical outcome ٠

Introduction	Methods	Results	Discussion
0 •	0000000	000000	0

Context

• **Clinical studies** described association between prognosis and baseline biomarker measurements^{4,5,6}, or biomarkers changes between different days^{7,8,9}

Mueller et al. Inflammatory Biomarker Trends Predict Respiratory Decline in COVID-19 Patients, Cells Reports Medicine, 2020

• None of them consider the full follow-up of biological information until clinical outcome

Objectives:

- To build a multivariable joint model with several biomarkers most associated with the risks of in-hospital death / discharge from hospital
- To assess the added value of considering results of biological exams during stay compared to only baseline (admission) information

Introduction	Methods	Results	Discussion
00	• 0 0 0 0 0 0	000000	0

<u>Patients</u>

- Retrospective cohort (RisCOV, PI: Pr Xavier Lescure)
 - 327 patients
 - 59 biomarkers
- Patients hospitalized during the **first wave of COVID-19 pandemic** (January to July 2020) in the Infectious and Tropical Disease Department of Bichat AP-HP (Paris, France)
- An extraction of the AP-HP data warehouse provided all the results of available biological exams during hospital stay until day 30
- Manual data collection for clinical variables and outcomes at day 30

<u>Outcomes</u>

- **Time to in-hospital death** (event of interest)
- Time to discharge from hospital (competing event)

Introduction	Methods	Results	Discussion
00	0 • 0 0 0 0 0 0	000000	0

Survival data

1.00-CIF of discharge 0.75-Cumulative Incidence 0.25 CIF of death 0.00-Time (days) Nb deaths Nb discharges Nb censoring Nb at risk

Cumulative incidence functions (CIF) for in-hospital death and discharge from hospital

N = 327 patients

Median follow-up time : 7.7 days

30 days after admission	
Deaths – Number (%)	46 (14%)
Discharges – Number (%) 238 (73%)
Censoring – Number (%) Hospital trans Still hospitalized at D	43 (13%) afer 20 (6%) a30 23 (7%)

Introduction	Methods	Results	Discussion
00	000000	000000	0

Biomarker data

N = 327K = 59

MARKER	UNIT	N*	n **
Complete blood count			
Erytrocytes	x10^12/L	326	6.6
Mean corpsular volume (MCV)	fL	326	6.6
Hemoglobin	g/dL	326	6.6
Hematocrit	%	326	6.6
Reticulocytes	x10^9/L	170	4.4
Leukocytes	x10^9/L	326	6.6
Basophil polynuclear cells	x10^9/L	322	6.4
Eosinophil polynuclear cells	x10^9/L	322	6.5
Neutrophil polynuclear cells	x10^9/L	326	6.5
Immatures granulocytes ratio	%	139	3.7
Lymphocytes	x10^9/L	326	6.5
Monocytes	x10^9/L	326	6.5
Platelets	x10^9/L	326	6.6

Coagulation			
Prothrombin Ratio (PR)	%	303	4.9
Activated partial tromboplastin time			
(aPTT)		297	4.6
Activated facteur II	%	153	4.5
Activated facteur V	%	155	4.5
Fibrinogen	g/L	294	4.4
Fibrin monomers	µg/mL	112	5.3
D-Dimers	ng/mL	218	3.9

Pulmonary functions			
Arterial pH		246	8.3
pO2a	mm Hg	246	8.3
pCO2a	mm Hg	246	8.3
Arterial lactate	mmol/L	231	8.1
Oxyhemoglobin ratio	%	245	8.0
Blood kidney functions/cellular lysis			
Natremia	mmol/L	327	7.1
Kalemia	mmol/L	325	7.1
Chloremia	mmol/L	300	5.7
Calcemia	mmol/L	315	5.3
Phosphates	mmol/L	281	4.9
Magnesium	mmol/L	260	5.2
Anion gap	mmol/L	280	4.8
Bicarbonates	mmol/L	295	5.7
Uremia	mmol/L	325	6.9
Protidemia	g/L	290	5.6
Creatininemia	μmol/L	327	6.5
Lactate dehydrogenase (LDH)	U/L	297	4.2

U/L

U/L

4.3

5.3

309

313

Creatine phosphokinase (CPK)

Alkaline phosphatases

Urine kidney functions			
Natriuresis	mmol/L	132	3.0
Kaliuresis	mmol/L	132	3.0
Urinary chloride	mmol/L	62	3.6
Proteinuria	g/L	109	2.9
Urinary urea	mmol/L	119	3.0
Creatinyuria	mmol/L	134	3.0
Glycosuria	mmol/L	76	3.2
Liver/pancreatic functions			
Alamine amino transferase (ALAT)	U/L	321	5.6
Aspartate amino transferase (ASAT)	U/L	321	5.6
Gamma GT	U/L	314	5.1
Total bilirubin	μmol/L	322	5.5
Lipasemia	U/L	158	4.3
Albuminemia	g/L	295	3.8
Markers of inflammation			
C-reactiv protein (CRP)	mg/L	318	5.5
Procalcitonin (PCT)	μg/L	229	4.0
Orosomucoid	g/L	101	4.2
Ferritin	μg/L	214	3.3
Haptoglobin	g/L	116	4.7
Candias manluars			
Cardiac markers			

Cardiac markers			
Ultrasensitive troponin I	μg/L	253	3.6
NT pro-BNP	ng/L	262	3.5

* : Number of patients with at least one observation between admission and day 30

** : mean number of observations for the patients having at least one between admission and day 30

Introduction O O		<u>Meth</u> 0 0 0	<u>ods</u> D●0000	D			Resul O O	ts 0 0 0 0 0		Discussion O
4C-Score ¹ at hospital adn	nission	(baseli	ine)					↓ ¹⁵	₽	
Compon	ents of th	ne 4C-Sco	ore					+		
Age, years	< 50					0	<	⊥o		
	50 – 59					+2				
	60 - 69					+4				
	70 – 79					+6				
	≥ 80					+7				
Sex at birth	Female		0	Male		+1	✓			
Number of commorbidities Comorbidities include chronic cardiac disease, chronic respiratory disease (excluding asthma), chronic renal disease, mild to severe liver disease, dementia, chronic neurological conditions, connective tissue disease, diabetes mellitus, HIV or AIDS and malignancy.	0	0	1	+1	≥ 2	+2	 ✓			
Respiratory rate, breaths/min	< 20	0	20 – 29	+1	≥ 30	+2	*			
Peripheral oxygen saturation on room air	≥ 92%		0	< 92%		+2	*			
Glasgow Coma Scale	15		0	< 15		+2	*			
Urea (mmoL/L) at admission	< 7	0	7 – 14	+1	> 14	+3	✓			
C-reactive protein (mg/L) at admisson	< 50	0	50 - 100	+1	≥ 100	+2	~			

Introduction	Methods	Results	Discussion
00	000000	000000	0

4C-Score¹ at hospital admission (baseline)

Components of the 4C-Score

Age, years	< 50					0	\checkmark
	50 – 59					+2	
	60 - 69					+4	
	70 – 79					+6	
	≥ 80					+7	
Sex at birth	Female		0	Male		+1	\checkmark
Number of commorbidities Comorbidities include chronic cardiac disease, chronic respiratory disease (excluding asthma), chronic renal disease, mild to severe liver disease, dementia, chronic neurological conditions, connective tissue disease, diabetes mellitus, HIV or AIDS and malignancy.	0	0	1	+1	≥ 2	+2	~
Respiratory rate, breaths/min	< 20	0	20 – 29	+1	≥ 30	+2	×
Peripheral oxygen saturation on room air	≥ 92 %		0	< 92%		+2	×
Glasgow Coma Scale	15		0	< 15		+2	×
Urea (mmoL/L) at admission	< 7	0	7 – 14	+1	> 14	+3	\checkmark
C-reactive protein (mg/L) at admisson	< 50	0	50 - 100	+1	≥ 100	+2	\checkmark

Number of patients	N = 327
Age – Number (%)	
< 50	73 (22)
[50-59]	74 (23)
[60-69]	71 (22)
[70-79]	62 (19)
≥ 80	47 (14)
Gender - Male – Number (%)	198 (61)
Number of commorbidities – Number (%)	
0	139 (43)
1	93 (28)
≥ 2	95 (29)
Urea (mmol/L) – med $[Q_1, Q_3]$	5.6 [4.1 - 8.1]
CRP (mg/L) – med $[Q_1, Q_3]$	67.5 [30.3 – 120.8]
Score – med $[Q_1, Q_3]$	6 [4 - 9]

Introduction O O	<u>Methods</u> ○ ○ ○ ○ ● ○ ○ ○	Results 0 0 0 0 0 0 0	Discussion O
Introduction O O Univariable joint models y_{ijk} : obs of marker k in patient i at time t_{ijk} med_k : median (y_{ijk})	$\frac{\text{Methods}}{0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$P(\psi_{ik}, t_{ijk}), \sigma_k] \varepsilon_{ij} \longrightarrow Mixed-effects$ $P(\psi_{ik}, t_{ijk}), \sigma_k] \varepsilon_{ij} \longrightarrow Subdistributi$ $P(\psi_{ik}, t_{ijk}), \sigma_k$ $P(\psi_{ik}, $	Discussion O s model on parametrization s risk of in-hospital death s risk of discharge from hospital

Introduction O O	<u>Methods</u> ○ ○ ○ ○ ● ○ ○ ○	Results 0 0 0 0 0 0 0)	Discussion O
Univariable joint models y_{ijk} : obs of marker k in patient i at time t_{ijk} med_k : median (y_{ijk})	$y_{ijk} = m(\psi_{ik}, t_{ijk})$ $\lambda_{1ik}(t) = h_{1k} \times \exp(\alpha_{1k} \times [m])$ $\lambda_{2ik}(t) = h_{2k} \times \exp(\alpha_{2k} \times [m])$	$+ g[m(\psi_{ik}, t_{ijk}), \sigma_k] \varepsilon_{ij} \longrightarrow$ $(\psi_{ik}, t) - med_k] + \beta_{1k} \times Score_i) \longrightarrow$ $(\psi_{ik}, t) - med_k] + \beta_{2k} \times Score_i) \longrightarrow$	Mixed-effects model Subdistribution parametrization instantaneous risk of in-hospital death instantaneous risk of discharge from ho	ospital
Linear $m(\psi_{ik}, t_{ijk}) = b_{0ik} + b_{1ik} \times t_{ijk}$	$b_1 < 0$		$b_{0ik} = \mu_{0k} + \eta_{b_{0ik}}$ $b_{1ik} = \mu_{1k} + \eta_{b_{1ik}}$ $b_{2ik} = \mu_{2k} + \eta_{b_{2ik}}$ $a_{ik} = \mu_{ak} \times e^{\eta^{a_{ik}}}$ $\eta_{.ik} \sim \mathcal{N}(0, \omega_{.ik})$	Random effects
Nonlinear $ \overline{m(\psi_{ik}, t_{ijk})} = b_{0ik} + a_{ik} \times [\exp(b_{1ik})] $	$\times t_{ijk}) - \exp(b_{2ik} \times t_{ijk})]$	$b_2 < b_1 < 0$	$\varepsilon_{ij} \sim \mathcal{N}(0,1)$	Residual error

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Linear modeling

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Linear modeling

Combined error function $(g[m(\psi_{ik}, t_{ijk}), \sigma_k] = [\sigma_{ak} + \sigma_{bk} \times m(\psi_{ik}, t_{ijk})])$

Error model selection

- constant error
- proportional error
- combined error

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Introduction	Methods	Results	Discussion
0 0	00000000	000000	0

Model assignement and quality control

Linear modeling

Introduction	Methods	Results	Discussion
00	00000000	000000	0

Model assignement and quality control

Linear modeling

Introduction	Methods	Results	Discussion
00	00000000	000000	0

Model assignement and quality control

Nonlinear modeling

Introduction	Methods	Results	Discussion
00	00000000	000000	0

Multivariable analysis

Biomarkers selected at the previous step are grouped following the initial classification

For each group, the biomarker with the **most significant** p-value for α_{1k} is considered for the multivariable analysis

Stop when all p-values for $\alpha_{2k} < 5\%$

Introduction	Methods	Results	Discussion
00	0000000	000000	0

Statistical methods

Model estimation

• Estimation by maximization of the likelihood (SAEM algorithm, Monolix 2018R2)

Individual predictions

- Derivation of dynamic predictions^{10,11} given 3 landmark times: D3, D6, D9
- Performances assessment using time-dependant AUC¹² and comparison with the baseline model

Baseline model

$$\lambda_{1i}(t) = h_1 \times \exp(\beta_1 \times Score_i) \quad \longleftarrow \quad \text{Subdistribution hazard for in-hospital death} \\ \lambda_{2i}(t) = h_2 \times \exp(\beta_2 \times Score_i) \quad \longleftarrow \quad \text{Subdistribution hazard for discharge from hospital}$$

Introduction	Methods			Resu	<u>ults</u>			Disc
0 0	0000000			0 ●	00000			0
Biomarkers selected for	Marqueur	N*	n**	α1	RSE (α_1)	-log10 pvalue Wald	model	
the multivariable analysis		Comulai				test on α_1		
•	Noutrophil polynyclear colls	226		0.24	16 17	9.20	nonlin	1
	Diatelets	326	6.6	-0.00/	27.66	3.52	lin	
	Frythrocytes	326	6.6	-0.004	45.28	1 57	lin	
	Hemoglobin	326	6.6	-0.14	49.06	1.38	lin	
		Co	agulation					
	D-Dimers	218	3.9	1.08	14.86	10.78	lin	'
	Activated facteur V	155	4.5	0.04	18.40	7.26	lin	
	Activated partial tromboplastin time (aPTT)	297	4.6	1.50	20.00	6.24	lin	
	Fibrinogen	294	4.4	0.70	22.10	5.22	lin	
	Activated facteur II	153	4.5	-0.02	45.62	1.55	lin	
		Pulmor	nary functions					
	рНа	246	8.3	-20.61	11.18	18.42	lin	
	pCO2a	246	8.3	0.19	12.48	14.95	lin	
* : Number of patients with at least one	Oxyhemoglobin ratio	245	8.0	-2.04	45.23	1.57	lin	
observation	Bio	od kidney fi	unctions/cellu	llar lysis	42.07	12.00	lt	1
** : mean number of observations for the	Lactate denydrogenase (LDH)	297	4.2	0.01	12.97	13.90	lin	
patients having at least one	Vieliurosis	325 122	0.9	0.07	10.11	7.48 6.72	nonlin	
	Magnesium	260	5.0	6.65	23.06	0.73	lin	
	Calcemia	315	53	-6.00	25.50	4.52	lin	
	Creatininemia	327	6.5	0.003	32.27	2.71	lin	
	Phosphates	281	4.9	1.92	39.10	1.98	lin	
	Kalemia	325	7.1	0.99	44.01	1.64	lin	
		Urine ki	dney function	s				
								-
		Liver/pan	creatic functio	ons				
	Albuminemia	295	3.8	-0.11	27.43	3.57	lin	
	Lipasemia	158	4.3	0.88	17.22	8.19	lin	
		Markers	of inflammatio	on				1
	CRP	318	5.5	1.25	17.63	7.85	lin	
	Haptoglobin	116	4.7	0.42	19.03	6.83	lin	
	Urosomucoid	101	4.2	1.85	19.87	6.32	lin	1
	NT proPND	262	ac markers	0.49	22.01	1 96	lin	25
	ит-ргорим	202	5.5	0.40	23.01	4.00	1111	23

Introduction	Methods	Results	Discussion
00	0000000	00000	0

Parameter estimation (multivariable joint model)

Parameter	Value	R.S.E.(%)
Longitudinal submodel		
Neutrophils		
μ_{0n} (G.L ⁻¹)	4.59	3.6
μ_{1n} (d ⁻¹)	-0.15	16.0
μ_{2n} (d-1)	-0.16	10.0
μ_{an} (G. L-1)	5.30	29.8
ω_{0n} (G.L-1)	2.10	7.1
ω_{1n} (d ⁻¹)	0.13	13.0
ω_{2n} (d ⁻¹)	0.076	24.2
ω_{an} (G.L-1)	0.83	24.8
σ_{bn}	0.32	2.2
<u>рН</u>		
μ_{0p}	7.44	0.05
μ_{1p} (d ⁻¹)	0.0027	29.1
ω_{0p}	0.039	7.1
ω_{1p} (d ⁻¹)	0.0053	11.6
σ_{ap}	0.055	1.7
<u>CRP</u>		
μ_{0c} (mg.L-1)	4.18	1.5
μ_{1c} (mg. L ⁻¹ . d ⁻¹)	-0.16	7.3
ω_{0c} (mg.L-1)	0.93	5.2
ω_{1c} (mg. L ⁻¹ . d ⁻¹)	0.15	7.4
σ_{ac} (mg. L-1)	0.71	2.1

Parameter	Value	R.S.E.(%)	p-value
Survival submodel			
<u>Death</u>			
h_{1} (d ⁻¹)	0.00037	65.3	
$lpha_{1n}$ (L×10 ⁻⁹)	0.14	24.2	$< 10^{-5}$
α_{1p}	-11.4	24.9	$< 10^{-5}$
α_{1c} (L.mg ⁻¹)	0.63	34.7	0.004
β_1	0.33	18.1	$< 10^{-5}$
Discharae			
Discharge			
h_2 (d-1)	0.014	51.4	
α _{2n} (L×10-9)	-0.14	39.1	0.01
α _{2p}	25.2	25.2	$< 10^{-5}$
α_{2c} (L.mg ⁻¹)	-1.09	16.2	$< 10^{-5}$
β_2	-0.12	27.3	0.0002

Introduction	Methods	Results	Discussion
00	0000000	000000	0

Longitudinal evolution of the selected biomarkers

Introduction	Methods	Results	Discussion
00	0000000	0000000	0

Individual predictions (baseline model)

Parameter	Estimate	SE	RSE (%)	P-value
<u>Death</u>				
h_1	0.0003	0.00016	53	
eta_1	0.357	0.05	14	< 10 ⁻¹²
<u>Discharge</u>				
h_2	0.129	0.016	13	
β_2	-0.143	0.02	13	< 10 ⁻¹²

Parameter estimates

• Baseline score = 8

Discharged at day 24

Survival prediction at day 30: 0.90 (95% CI [0.87,0.93]) • Baseline score = 6

• Dead at day 22

Patient B

Survival prediction at day 30: 0.95 (95% CI [0.93,0.97])

 $\exp(\hat{\beta}_1) = \mathbf{1.43} (95\% \text{ CI} = [\mathbf{1.30}; \mathbf{1.58}])$

 $\exp(\hat{\beta}_2) = \mathbf{0.87} (95\% \text{ CI} = [\mathbf{0.83}; \mathbf{0.90}])$

Introduction O O	Methods 0 0 0 0 0 0 0 0	<u>Results</u> ○ ○ ○ ○ ● ○		Discussion O
Individual dynamic predictions Patient A, baseline score = 8, discharged at day 24	Landmark day 3	Landmark day 6	Landmark day 9 30 40 10 0 5 10 15 20 25 30 30 40 15 20 25 30 30 30 30 30 40 40 5 10 15 20 25 30 30 30 30 40 15 20 25 30	
 Iandmark time future marker value observed marker value predicted pH value predicted CRP value predicted neutrophil value predicted survival 	7.6 7.4 7.2 0 5 10 15 20 25 30 Time (days)	7.6 7.4 7.2 0 5 10 15 20 25 30	7.6 7.4 7.2 0 5 10 15 20 25 30	
death discharge 95% prediction interval	10.0 7.5 5.0 2.5 0.0 5 10 15 20 25 30 Time (days)	$\begin{array}{c} 10.0 \\ 7.5 \\ 5.0 \\ 2.5 \\ 0.0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \end{array}$	$\begin{array}{c} 10.0 \\ 7.5 \\ 5.0 \\ 2.5 \\ 0.0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \end{array}$	
	1.00 0.75 0.25 0.25 0.00 0 5 10 15 20 25 30 Time (days)	1.00 0.75 0.50 0.25 0.00 0 5 10 15 20 25 30	1.00 0.75 0.50 0.25 0.00 0 5 10 15 20 25 30	29

Introduction O O		Methods 0 0 0 0 0 0 0 0	<u>Results</u> ○ ○ ○ ○ ● ○		Discussion O
Individu	Val dynamic predictions Patient B, baseline score = 6, dead at day 22	Landmark day 3	Landmark day 6	Landmark day 9 30 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	
	landmark time future marker value observed marker value predicted pH value predicted CRP value predicted neutrophil value predicted survival	(Free for the second se	7.6 - 7.4 - 7.2	7.6 7.4 7.2 0 5 10 15 20 25 30	
	discharge 95% prediction interval	(10.0 - 7.5 - 5.0 - 5.0 - 7.5 - 0.0 - 7.5 - 0.0 - 7.5 - 0.0 - 7.5 - 0.0 - 7.5 - 7.	10.0 7.5 5.0 2.5 0.0 0 5 10 15 20 25 30	10.0 7.5 5.0 2.5 0.0 0 5 10 15 20 25 30	
		1.00 = 0.75 = 0.00 = 0.	1.00 - 0.75 - 0.50 - 0.25 - 0.00 -	1.00 - 0.75 - 0.50 - 0.25 - 0.00 -	

0 5 10 15 20 25 30

Time (days)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

30

Introduction	Methods	Results	Discussion
00	0000000	000000	0

Prediction performances

Time-dependant AUC for baseline and multivariable joint model

Horizon time = 30	Landmark day 3
AUC [95% CI] – baseline model	0.79 [0.72,0.86]
AUC [95% Cl] – joint model	0.82 [0.75,0.89]
p-value	0.37

Introduction	Methods	Results	Discussion
00	0000000	000000	0

Prediction performances

Time-dependant AUC for baseline and multivariable joint model

Horizon time = 30	Landmark day 3	Landmark day 6
AUC [95% CI] – baseline model	0.79 [0.72,0.86]	0.73 [0.65,0.81]
AUC [95% Cl] – joint model	0.82 [0.75,0.89]	0.81 [0.73,0.89]
p-value	0.37	0.04

Introduction	Methods	Results	Discussion
00	0000000	000000	0

Prediction performances

Time-dependant AUC for baseline and multivariable joint model

Horizon time = 30	Landmark day 3	Landmark day 6	Landmark day 9
AUC [95% CI] – baseline model	0.79 [0.72,0.86]	0.73 [0.65,0.81]	0.64 [0.55,0.74]
AUC [95% Cl] – joint model	0.82 [0.75,0.89]	0.81 [0.73,0.89]	0.84 [0.75,0.93]
p-value	0.37	0.04	< 10 ⁻⁵

Introduction	Methods	Results	Discussion
00	0000000	000000	•

Discussion

- We showed the added-value of **longitudinal biological follow-up** and the joint modelling approach for improving prognosis predictions.
- The originality of the work relies on:
 - the statistical approach combining multiple longitudinal models jointly estimated with a parametric subdistribution model
 - the use of real-life hospital data to collect massive data on biological examinations
- Such a tool could help clinicians in **complex decisions** such as therapeutic escalation or limitation of care (which arise during the follow-up and not at admission)

Introduction	Methods	Results	Discussion
00	0000000	000000	•

Discussion

- We showed the added-value of **longitudinal biological follow-up** and the joint modelling approach for improving prognosis predictions.
- The originality of the work relies on:
 - the statistical approach combining multiple longitudinal models jointly estimated with a parametric subdistribution model
 - the use of real-life hospital data to collect massive data on biological examinations
- Such a tool could help clinicians in **complex decisions** such as therapeutic escalation or limitation of care (which arise during the follow-up and not at admission)

<u>Limits</u>

- No correlation was tested between parameters
- Performances should be evaluated on an external data set
- In high dimension, stepwise/backward selection on regression models have been shown to be outperformed by penalized regression methods^{13,14}

Perspective: a LASSO penalization¹³ implementation

30th PAGEmeeting

Ljubljana • Slovenia 28 June – 1 July 2022

Thank you for your attention!

