Subspace MCMC algorithm for Bayesian parameter estimation of hierarchical PK/PD models in Pumas

1. Objectives

To speed up the sampling from highdimensional posteriors of hierarchical Pumas models with a high correlation between the variables' samples

2. Methods

The subspace inference method for PK/PD models implemented in two steps:

- subspace construction by using principle component analysis(PCA) method
- 2. NUTS posterior sampling in a subspace (aka subspace inference).

2.1 Subspace Construction Algorithm

Algorithm 1 Subspace Construction					
$P_m \leftarrow P_0$ \triangleright Initialize mean of parameters as					
pretrained value					
for $i=1:T$ do	▷ For every iteration				
for $s=1:N do$	▷ For every subjects				
gradient of log	density w.r.t				
subject, Δ					
$P_0 \leftarrow P_0 + \Delta \triangleright Up$	date parameter value				
$P_m \leftarrow (i * P_m + P_i)$	$(i + 1) \triangleright Update$				
mean of parameters					
$push(P_{dev}, P_0 - P_r)$	n) ▷ Push the				
parameter deviation to the deviation matrix					
end for					
end for					
$U, S, Vt = svd(P_{dev})$	\triangleright Do singular value				
decomposition					
$P_{prj} \leftarrow U[:, 1 : M] * S[:, 1$: M] ightarrow Calculate				
subspace					

Manu Francis, Vijay Ivaturi, Mohamed Tarek

2.2 Subspace Inference

- Define log density function and log density gradient function to generate samples of subspace, *z* with size of *M*
- Generate random samples of z based on log density
- Calculate PK/PD model parameter,

 $Params = P_{prj} * z + P_m$

3. Implementation

Implemented in a development version of Pumas.

4. Results

The experiments are conducted and compared with NUTS sampling method available in Pumas. The performance of subspace inference for PK/PD parameter estimation is analysed by comparing sampling time, effective sample size etc.

Figure 1: Eigenvalues of covariances of NUTS samples vs percentage of parameters

The Figure 1 shows that eigen values of sample covariance is quickly reducing, so only few variables contributes to whole variance. So, whole parameter space converges to a subspace.

Table 1: Effect of population size in sampling time

Population Size	120		30	
Algorithm	Sub	NUTS	Sub	NUTS
Sampling Time (s)	64	132	20	19
Mean θ_1	3.50	3.48	3.44	3.44
$\mathbf{Std} \theta_1$	0.07	0.11	0.16	0.203
Ess θ_1	199	34.90	226.7	107.7

pumas[^]

Table 2: Sampling time, Effective sample size, mean and variance comparison

Algorithm	Subspace Int	NUTS	
Params	Rank = 20	Rank = 10	NUID
Sampling Time	73s	29s	175s
$\mathbf{Mean}\theta_1$	2.02	2.26	1.846
Std θ_1	0.2332	0.128	0.498
Ess θ_1	2484.13	912.64	1622

5. Conclusion

The proposed method outperforms the NUTS-based method for PK/PD parameter estimation. When the subspace size increases then the mean value approaches the true value. However, increase in the subspace size increases the time for the parameter estimation.

References

- Rackauckas, Chris, et al. "Accelerated predictive healthcare analytics with pumas, a high performance pharmaceutical modelling and simulation platform." (2020).
- Izmailov, Pavel, et al. "Subspace inference for Bayesian deep learning." Uncertainty in Artificial Intelligence. PMLR, 2020.