Modelling is seldom used to describe pharmacokinetics in phase I clinical trials

Emmanuelle Comets ¹* and Sarah Zohar ^{2,3}

¹ INSERM U738, Paris, France; Université Paris Diderot (Paris 7), UFR de Médecine, Paris, France

Data abstraction form

Statistical analysis descriptive statistics

ing the guidance for PK studies in humans [1]:

ogy, drugs tested, and study objectives

escalation procedures, patient selection procedures

• data management and statistical analyses using R

² INSERM CIC 9504, Centre d'Investigations Cliniques, Hôpital Saint-Louis, Paris, France

³ INSERM U717, Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, Paris, France

Objective: To investigate the way pharmacokinetics (PK) is described and reported in phase I clinical trials through a bibliographic study.

Relevant information extracted using a data abstraction form, built us-

• general characteristics, including address, affiliation, journal, pathol-

study design, including number of subjects, number of dose levels, dose

• PK analysis, including number of subjects included in PK, description

of the sampling times, analysis methods, PK variables reported

Methods

Article selection

- PubMed search, with criteria :
- in title: "phase I" or "phase 1"
- in title, abstract, keywords: pharmacokinetic*
- limited to English language published in 2005 or 2006
- selection of 60 papers for each year random sample
- full text obtained through online librairies, mail service or direct contact
- 40 papers read by both authors

Results

Item		N (%)
Year	2005 2006	56 (50%) 56 (50%)
Country	North America Europe Asia other	66 (59%) 33 (29%) 9 (8%) 4 (4%)
Pharmaceutical industry [*]	yes no	51 (46%) 61 (54%)
Pathology	cancer infectious disease other	103 (92% 3 (3%) 6 (5%)
Population	adults children or adults children/young	104 (93% 1 (0.9%) 7 (6%)
Subjects	patients healthy volunteers	104 (93%) 8 (7%)
Study objective**	MTD DLT PK dose toxicity efficacy other	78 (70%) 13 (12%) 90 (80%) 3 (3%) 42 (38%) 25 (22%) 5 (4%)
Number of subjects	median [range]	24 [8-151]

Table 1: Characteristics of the 112 papers read in the present study. * the answer 'no' means 'no' or 'not reported ** multiple answers are possible

pharmaceutical industry present in about half of the papers

item recorded based on the affiliations and addresses provided

- probably underestimates actual proportion of phase I studies performed by the pharmaceutical industry (publication bias?)
- overwhelming majority of papers dealing with cancer patients (92%)
- although not explicitly selected in the search
- phase I studies maybe more codified in oncology
- objectives
- PK explicitly stated in the objectives for 80% of the studies
- determination of the maximum tolerated dose (MTD) or dose-limiting toxicities (DLT) also frequently stated (consistent with the large number of studies in oncology)

References

- Food and Drug Administration. Guideline for the format and content of the hu-man pharmacokimetics and bioavailability section of an application. 1987. URL http://www.fda.gov/CDER/GUIDANCE/old071fn.pdf
- J. Aarons, M. O. Karlsson, F. Mentré, F. Rombout, A. van Peer, and invited COST B15 Experts. Role of modelling and simulation in Phase I drug development. Euro-[2] L pean Journal of Pharmaceutical Sciences 13:115-22 (2001).

Pharmacokinetic stu	dy	
Item		N (%)
Description of PK	yes partial no	93 (83%) 6 (5%) 13 (12%)
Multiple occasions	yes no	78 (70%) 34 (30%)
Analysis method	Descriptive Non compartmental method (NCA) Non linear regression (RNL) Population approach (POP) NCA and RNL NCA and POP Not reported	13 (12%) 73 (65%) 7 (6%) 5 (4%) 4 (4%) 1 (0.9%) 9 (8%)
Model built	yes NR for PK, yes for PD no	18 (16%) 1 (0.9%) 93 (83%)
Relationship PK/toxicity	no yes not applicable	96 (86%) 10 (9%) 6 (5%)
Relationship PK/efficacy	no yes not applicable	94 (84%) 12 (11%) 6 (5%)
PK variables*	Observed concentrations Cmax, Css, Cmin, AUC by NCA CL by NCA Additional NCA parameters PK model parameters Other none reported	12 (11%) 73 (65%) 85 (76%) 58 (52%) 59 (53%) 8 (7%) 22 (20%) 7 (6%)

Table 2: Characteristics of the pharmacokinetic study. * multiple answers are possible

- description of the design usually available in methods
- $-\operatorname{description}$ incomplete or missing in 17% of the papers - a majority of studies involve sampling on several occasions
- extensive sampling statistical methods
- modelling used in around 15% of the studies
- non-compartmental approaches used in 2/3 of the studies
- results purely descriptive in 12%
- software often not reported
- results
- less standardised as the methods section
- often missing information
- PK results usually reported separately from clinical results
- only 10 papers study the relationship PK-toxicity, and 12 the relationship PK-efficacy

[3] V. Bhattaram, C. Bonapace, D. Chilukuri, J. Duan, C. Garnett, J. Gobburu, S. Jang, L. Kenna, L. Lesko, R. Madabushi, Y. Men, J. Powell, W. Qiu, R. Ramchandani, C. Tornoe, Y. Wang, and J. Zheng. Impact of pharmacometric reviews on new drug approval and labeling decisions - a survey of 31 new drug applications submitted be-tween 2005 and 2006. Clinical Pharmacology and Therapeutics 81:213-21 (2007). [4] Food and Drug Administration. Innovation or stagnation: critical path opportu-nities report. Rockville, Maryland, USA, 2006.

URL http://www.fda.gov/oc/initiatives/criticalpath/reports/opp_report.pdf

Figure 1: Flow-chart of the selection process.

Combination	therapies
-------------	-----------

Item		N (%)
Single drug	yes no	61 (54 51 (46
Interaction study (n=51)	yes no	10 (20 41 (80
Double escalade (n=51)	yes no	17(33) 34(67)
PK studied for associated drugs (n=51)	yes partial no	23 (45 4 (8% 24 (47
Interaction studied (n=51)	yes partial no	9 (189 12 (24 30 (59

Table 3: Multiple or single drug.

- 45% involve at least 2 drugs
- dose escalation for all drugs in only 1/3 of these studies
- Discussion

Main findings:

- mostly studies in oncology
- search bias: "phase I" only in title
- * but previous search with "phase I" anywhere in title, keywords and abstract led to similar results, and resulted in a larger percentage of excluded papers
- publication/reporting bias
- * time pressure
- * phase I studies in oncology mostly performed in patients, maybe more likely to involve academia and be published? - definition of phase I in different fields
- modelling seldom used
- some consequences
- * multiple occasions available in 70% of the studies but interoccasion variability seldom studied
- \ast loss of data from patients considered not evaluable for NCA
- \ast PK results for different doses reported separately and not related \ast relationship between PK and efficacy or toxicity rarely investigated - added value of modelling
- \ast modelling approaches useful for decision purposes [2]
- * modelling helps the drug approval process [3] * the critical path initiative suggests a better integration of all infor-
- mation (including PK) during drug development [4]

Study limits:

- selection not exhaustive (randomised sample)
- pilot study, will be extended
- based on available information
- focus on study reporting through published information

Inserm * Presenting author email: emmanuelle.comets@inserm.fr

