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Pharmacogenomics

m Personalized drug therapy?

m High-throughput approach to identifying genetic
determinants of drug response

m lack of large-scale pharmacogenomic studies with
adequate follow-up

m Guideline on the use of pharmacogenetic methodologies in
the pharmacokinetic evaluation of medicinal products?

m large genetic arrays when no hypothesis on genetic origin

m level of evidence similar to that required in drug-drug
interaction

m modelling and simulation to help in analysis and design

LEvans WE, Relling MV. Nature. 2004
2EMA/CHMP/37646/2009
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Pharmacogenomic model

m Nonlinear mixed effects (NLME)

yij = foi, tyj) + €, with €;; ~ N(O, o?)
¢i=h(Cp+mni) , with n; ~ N(0,Q)

(u) = € log-normal distribution
= </~7’7 Qu a—\) EBE; = Argmax¢i p(¢l‘yl7 0)

D) =
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Pharmacogenomic model

m Nonlinear mixed effects (NLME)
m genetic variation: single nucleotide polymorphism, SNP
vii = flgi, tij) + €, with € ~ N(0,0?)
@i =h(Cp+mni) , with n;~ N(0,Q)
m linear regression on allele dosage SNP = {0, 1,2}

oi = Gi [ +  mi
Her
Ber,snp

logCL; = (1 SNPi; ... SNPys ) o neLi
BcL,SNPy,

h(u) = €" log-normal distribution
6 = (1,0,5) EBE; = Argmaxg, p(¢ilyi; )
m number of SNPs, Ns >> N, number of subjects

m varying in informativeness and correlated
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Pharmacogenomic analysis

m Method 1: Modified stepwise procedure

m commonly found in the literature

m screening step adapted to account for genetic correlation
m Penalised regression

m established in animal and plant genetics
m Method 2: Lasso
m Method 3: HLasso

m developed for genome-wise association studies
m higher effect size once included in the model

m performed on EBE from base model

< computationally and statistically efficient®

— 2-stage approaches: SNP selection after model parameter
estimation
3Bertrand J, Balding DJ. Pharmacogenet Genomics. 2013

j.bertrand@ucl.ac.uk PAGE 13/06/13 4 /15



Introduction Objectives Methods Simulation study Results Discussion
[ ]

Objectives

m To develop a method 4: integrated approach
m to simultaneously estimate PK model parameters and
genetic effects size
m To compare through a realistic simulation study:

1 adapted stepwise procedure
2 Lasso regression on EBE

3 HLasso regression on EBE
4 integrated approach
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2-stage approaches

1 Stepwise procedure
i screening step, for each pt" model parameter per SNP

Bps = argming,, Z (EBEpi — Bps X SNPS,)
m pruning on multiple significant SNPs with 2 > 0.8

ii model inclusion and selection step
O repeat i-ii until no more SNPs significant

j.bertrand@ucl.ac.uk PAGE 13/06/13 6 /15



Introduction Objectives Simulation study Results Discussion

2-stage approaches

1 Stepwise procedure
i screening step, for each pt" model parameter per SNP
Bps = argming,, Z (EBEpi — Bps X SNPS,)
m pruning on multiple significant SNPs with 2 > 0.8

ii model inclusion and selection step
O repeat i-ii until no more SNPs significant

m Penalised regression, for each p® model parameter
Bp = argming, Z (EBEpi — Bp x SNP) +P(Bp)

2 Lasso, P¢(3p) ~ double exponential prior on 3,
m ¢ set by permutations to ensure a target family wise
error rate (FWER)
3 HLasso, Py ,(8p) ~ normal exponential gamma

prior on 3,
m ) set to 1, v set by permutations
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Integrated approach

m Simultaneous SNP selection and estimation of PK model
parameters

m HLasso at each iteration of the SAEM algorithm
m Maximization-step of p in SAEM
fip1 = argming S (sik — Cipe)' Q" (sik — Cipa)

At iteration k

@ik drawn from p(.|y; Ok)

Sik = Sik—1 + Tk(Pik — Sik—1)
w= (pch, bv, Baits -+ Beine)

Tk, a decreasing sequence of positive numbers
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Integrated approach

m Simultaneous SNP selection and estimation of PK model
parameters

m HLasso at each iteration of the SAEM algorithm
m Maximization-step of p in the integrated approach

iy = argming S (s — Gi)' Q™ (sik — Cips) + Pao (1)
m call to hlasso program with sj as the response
m ) set to 1, v set using an asymptotic approximation
m implemented in the saemix R package

At iteration k

@ik drawn from p(.|y; Ok)

Sik = Sik—1 + Tk(Pik — Sik—1)
w= (pch, bv, Baits -+ Beine)

Tk, a decreasing sequence of positive numbers
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Pharmacokinetic settings

m Structural and statistical model

m inspired from real study *
Tlag (]]) =1 (30"4:) Q/F (]J]]) =62.9 (60.3"4)
Ka ('h) = 3.07 (49%)

Dose = 600 (ng) e | VE/F (L) = 189 (40.1%) VPIF (L) =233 (0%)

—
once daily ~S—

l CL/F (L/h) = 11.7 (39.7%)

m diagonal variance matrix of random effects
m combined residual error model

m Phase Il-like study design
m 300 individuals with t= 0.5, 1.25, 2, 4, 9, 24

4Kappelhoff et al. Clinical pharmacokinetics, 2005
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Pharmacokinetic settings

m Structural and statistical model

m inspired from real study *
Tlag (b) =1 (30%) Q/F (I/h) = 62.9 (60.8%)
Ka (/h) =3.07 (49%)

Dose = 600 (ing) i | VEELY= 189 (40.1%) VpIF (L) =233 (0%)

—
once daily ~S—

l CL/F (L/h) = 11.7 (39.7%)

m diagonal variance matrix of random effects
m combined residual error model

m Phase Il-like study design
m 300 individuals with t= 0.5, 1.25, 2, 4, 9, 24

4Kappelhoff et al. Clinical pharmacokinetics, 2005
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Genetic settings

m Generation of genotypes using HAPGEN °
m N,=1227 snps on 171 genes from the DMET Chip °
m 6 [1-56] snps per gene
m HAPMAP caucasian reference haplotypes

m Alternative hypothesis H;=presence of a genetic effect

m 200 simulated data sets

m 6 unobserved causal variants with allele frequency, ps
m decrease in log(CL/F) with allele dosage
m varying genetic component of interindividual variability

_ B2 2ps(1—ps)
552 X 2ps(1 - Ps) + w?:[_//:

6
Re =Y  Res = 30%
s=1
5Su et al. Bioinformatics, 2011
®Daly et al. Clinical Chemistry, 2007
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A typical simulated dataset

In absence of a genetic effect

In presence of the effect of 6 causal variants

SIMUIAIEa concentrauons (mg/L)

0 5 1h 1'5 20 0 5 1:Fime (h) 15
Common Homozygotes, (causal variants =0) Heterozygotes, (causal variants =1) Rare Homozygotes, (causal variants =2)
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Computing times

In absence of a genstic effect

2 hour —

1 hour

30 min

10 min —
0- T T T T

Stepwise proc. Lasso HLasso Integrated appr.
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@000

Computing times

In absence of a genstic effect

2 hour —

1 hour

30 min

10 min —
0- T T T

Stepwise proc. Lasso HLasso Integrated appr.

m Similar computing times for
2-stage approaches
m Integrated approach
m HLasso run at each
SAEM iteration
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Computing times

In absence of a genstic effect In presence of the effect of 6 causal variants
2 hour —
1 hour —
30 min —
M e ] e i Il —— .
Stepwise proc. Lasso HLasso Integrated appr. Stepwise proc. Lasso HLasso Integrated appr.
m Similar computing times for m Slight increase for all
2-stage approaches methods
m Integrated approach m Stepwise proc.= 10 times
m HLasso run at each longer run times under H;

SAEM iteration
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FWER and TP
FWER(%) TP FPcr FPygr  FPoe
Stepwise proc. 18.5 338 [302-374] 15 [7-23] 8 [2-14] 30 [19-41]
Lasso 18.5 311 [276-346] 12 [5-19] 18 [10-26] 11 [4-18]
HLasso 18 316 [281-351] 14 [7-21] 15 [7-23] 11 [4-18]
Integrated appr. 20 256 [225-287] 19 [10-28] 7 [2-12] 0

Family wise error rate, FWVER= expected value of 20[14.5-25.5]%
True positive, TP=SNP in r?> >0.05 with causal variant; maximum, possible 1200
False positives, FP
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FWER and TP
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FWER and TP
FWER(%) TP FPcr FPygr  FPoe
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FWER and TP
FWER(%) TP FPcyr FPugr  FPor
Stepwise proc. 18.5 338 [302-374] 15 [7-23] 8 [2-14] 30 [19-41]
Lasso 185 311 [276-346] [12 [6-19] 18 [10-26] 11 [4-18]
HLasso 18 316 [281-351] [14 [7=21] 15 [7-23] 11 [4-18]
Integrated appr. 20 256 [225-287] [19°[10-28] 7 [2-12] 0

Family wise error rate, FWVER= expected value of 20[14.5-25.5]%
True positive, TP=SNP in r?> >0.05 with causal variant; maximum, possible 1200
False positives, FP
m target FWER of 20% achieved with all methods
m Integrated approach
m lower TP count
m lower FP count on Vc/F and Q/F
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Estimation performance

Integrated approach in absence of a genetic effect
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Estimation performance

Integrated approach in absence of a genetic effect

Discussion
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m Fixed effects
m less than 3% Rbias and RRMSE from 3-15%
m Variances
m less than 5% Rbias and RRMSE from 20-50%
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Discussion

Power to detect multiple variants

—&— Stepwise proc.
. I Lasso
X 97 —— HLasso
3 II I —%— |ntegrated appr.
S .
© T T |I :E I|E I Ir'\ uts
0 1 2 3 4 5 6

x=number of causal variants
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Discussion

Power to detect multiple variants

—&— Stepwise proc.
. I Lasso
X 97 —— HLasso
3 II I —%— |ntegrated appr.
S o
o N

D . H.I b

= Hx
= al
0 1 2 3 4 5

x=number of causal variants

m None of the approaches select the 6 causal variants
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[e]ele] ]

Discussion

Power to detect multiple variants

—&— Stepwise proc.

. I Lasso
X 97 —— HLasso
3 II I —%— |ntegrated appr.
S .
aQ «7 ]:I

© T T |I IE I Ir'\ uts

0 1 2 3 4 5 6

x=number of causal variants

m None of the approaches select the 6 causal variants

m Integrated approach favours more parsimonious models
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Discussion

m Realistic simulation study
m feasability of combining large SNPs set and NLME model

m chosen FWER of 20% to enable power comparisons
m analyses for exploratory purposes
m further functional studies required

m Integrated approach

+ full model-based approach

+ less false positives

— longer computing times

— less powerful to detect multiple SNPs
m Future works

m influence of shape parameter

m larger shape parameter — Lasso

m full Bayesian approach
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Asymptotic approximation to set -y

‘5p:0

sign(B, = 07)(2) 4 1) D—2x12)(
v D_(2x+1)(

6, = VAR(s,.4) /w?

reflects the design information

VAR(s,x) < w2 — increases penalisation

VAR(sp.x) derived using Batch means method
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