

Incorporating genetic predictors within the SAEM algorithm

Introduction

Julie Bertrand, Maria de Iorio, David Balding

Genetics Institute, University College London, London, UK Department of Statistical Science, University College London, London, UK

13 June, 2013

j.bertrand@ucl.ac.uk PAGE 13/06/13 1 /15

Pharmacogenomics

Introduction

- Personalized drug therapy¹
 - High-throughput approach to identifying genetic determinants of drug response
 - lack of large-scale pharmacogenomic studies with adequate follow-up
- Guideline on the use of pharmacogenetic methodologies in the pharmacokinetic evaluation of medicinal products²
 - large genetic arrays when no hypothesis on genetic origin
 - level of evidence similar to that required in drug-drug interaction
 - modelling and simulation to help in analysis and design

i,bertrand@ucl.ac.uk PAGE 13/06/13 2 /15

¹Evans WE, Relling MV. Nature. 2004 ²EMA/CHMP/37646/2009

Pharmacogenomic model

Nonlinear mixed effects (NLME)

$$y_{ij} = f(\phi_i, t_{ij}) + \epsilon_{ij}$$
, with $\epsilon_{ij} \sim N(0, \sigma^2)$
 $\phi_i = h(C_i \mu + \eta_i)$, with $\eta_i \sim N(0, \Omega)$

$$h(u) = e^u \text{ log-normal distribution}$$

 $\widehat{\boldsymbol{\theta}} = (\widehat{\boldsymbol{\mu}}, \widehat{\Omega}, \widehat{\sigma}) \quad \text{EBE}_{\mathbf{i}} = Argmax_{\phi_i} \ p(\phi_i | \mathbf{y}_i; \widehat{\boldsymbol{\theta}})$

Introduction

Pharmacogenomic model

- Nonlinear mixed effects (NLME)
 - genetic variation: single nucleotide polymorphism, SNP

$$\mathbf{y}_{ij} = \mathbf{f}(\phi_i, t_{ij}) + \epsilon_{ij}$$
 , with $\epsilon_{ij} \sim \mathbf{N}(0, \sigma^2)$

$$oldsymbol{\phi_i} = h \left(\mathcal{C}_i oldsymbol{\mu} + oldsymbol{\eta_i}
ight)$$
 , with $oldsymbol{\eta_i} \sim \mathcal{N}(0,\Omega)$

■ linear regression on allele dosage
$$SNP = \{0, 1, 2\}$$

$$\phi_{i} = C_{i} \qquad \mu + \eta_{i}$$

$$\log CL_{i} = (1 \quad SNP_{1i} \dots SNP_{Nsi}) \begin{pmatrix} \mu_{CL} \\ \beta_{CL,SNP_{1}} \\ \vdots \\ \beta_{CL,SNP_{Ns}} \end{pmatrix} + \eta_{CLi}$$

 $h(u) = e^u$ log-normal distribution

$$\widehat{\boldsymbol{\theta}} = (\widehat{\boldsymbol{\mu}}, \widehat{\Omega}, \widehat{\sigma})$$
 EBE_i = $Argmax_{\phi_i} p(\phi_i | \mathbf{y}_i; \widehat{\boldsymbol{\theta}})$

- number of SNPs, $N_s >> N$, number of subjects

j.bertrand@ucl.ac.uk PAGE 13/06/13 3 /1

Pharmacogenomic analysis

Introduction

- Method 1: Modified stepwise procedure
 - commonly found in the literature
 - screening step adapted to account for genetic correlation
- Penalised regression
 - established in animal and plant genetics
 - Method 2: Lasso
 - Method 3: HLasso
 - developed for genome-wise association studies
 - higher effect size once included in the model
 - performed on EBE from base model
- → computationally and statistically efficient³
- → 2-stage approaches: SNP selection after model parameter estimation

j.bertrand@ucl.ac.uk PAGE 13/06/13 4 /

Objectives

- To develop a method 4: integrated approach
 - to simultaneously estimate PK model parameters and genetic effects size
- To compare through a realistic simulation study:
 - 1 adapted stepwise procedure
 - 2 Lasso regression on EBE
 - 3 HLasso regression on EBE
 - 4 integrated approach

2-stage approaches

- 1 Stepwise procedure
 - i screening step, for each p^{th} model parameter per SNP

$$\widehat{\beta_{ps}} = \operatorname{argmin}_{\beta_{ps}} \sum_{i}^{N} (\mathbf{EBE_{pi}} - \beta_{ps} \times SNP_{si})^{2}$$

- pruning on multiple significant SNPs with $r^2 \ge 0.8$
- ii model inclusion and selection step
- orepeat i-ii until no more SNPs significant

2-stage approaches

Introduction

- 1 Stepwise procedure
 - i screening step, for each p^{th} model parameter per SNP $\widehat{\beta_{ps}} = argmin_{\beta_{ps}} \sum_{i}^{N} (EBE_{pi} \beta_{ps} \times SNP_{si})^{2}$
 - pruning on multiple significant SNPs with $r^2 \ge 0.8$
 - ii model inclusion and selection step
 - orepeat i-ii until no more SNPs significant
- Penalised regression, for each p^{th} model parameter $\widehat{\beta_p} = argmin_{\beta_p} \sum_{i}^{N} (\textit{EBE}_{pi} \beta_p \times \textit{SNP}_i)^2 + P(\beta_p)$
 - 2 Lasso, $P_{\xi}(\beta_p) \approx$ double exponential prior on β_p
 - \bullet ξ set by permutations to ensure a target family wise error rate (FWER)
 - 3 HLasso, $P_{\lambda,\gamma}(\beta_p) \approx$ normal exponential gamma prior on β_p

lacksquare λ set to 1, γ set by permutations lacksquare

Integrated approach

Introduction

- Simultaneous SNP selection and estimation of PK model parameters
 - HLasso at each iteration of the SAEM algorithm
- \blacksquare Maximization-step of μ in SAEM

$$\widehat{\mu_{k+1}} = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} (\mathbf{s}_{ik} - C_i \mu)' \Omega^{-1} (\mathbf{s}_{ik} - C_i \mu)$$

At iteration k

$$\phi_{ik}$$
 drawn from $p(.|\mathbf{y};\theta_k)$

$$s_{ik} = s_{ik-1} + au_k(\phi_{ik} - s_{ik-1})$$

$$\mu = (\mu_{Cl}, \mu_{V}, \beta_{Cl,1}, \dots, \beta_{Cl,N_s})$$

 τ_k , a decreasing sequence of positive numbers.

Integrated approach

Introduction

- Simultaneous SNP selection and estimation of PK model parameters
 - HLasso at each iteration of the SAEM algorithm
- \blacksquare Maximization-step of μ in the integrated approach

$$\widehat{\mu_{k+1}} = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} (\mathbf{s}_{ik} - C_i \mu)' \Omega^{-1} (\mathbf{s}_{ik} - C_i \mu) + P_{\lambda, \gamma}(\mu)$$

- \blacksquare call to hlasso program with s_{ik} as the response
- \bullet λ set to 1, γ set using an asymptotic approximation
- implemented in the saemix R package

At iteration k

$$\phi_{ik}$$
 drawn from $p(.|\mathbf{y};\theta_k)$

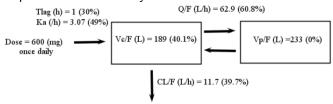
$$oldsymbol{s_{ik}} = oldsymbol{s_{ik-1}} + au_k(oldsymbol{\phi_{ik}} - oldsymbol{s_{ik-1}})$$

$$\mu = (\mu_{Cl}, \mu_{V}, \beta_{Cl,1}, \dots, \beta_{Cl,N_s})$$

Introduction

Pharmacokinetic settings

- Structural and statistical model
 - inspired from real study ⁴



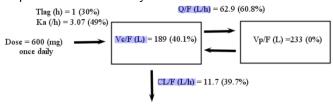
- diagonal variance matrix of random effects
- combined residual error model
- Phase II-like study design
 - 300 individuals with t= 0.5, 1.25, 2, 4, 9, 24

j.bertrand@ucl.ac.uk PAGE 13/06/13 8/1

Pharmacokinetic settings

Introduction

- Structural and statistical model
 - inspired from real study ⁴



- diagonal variance matrix of random effects
- combined residual error model
- Phase II-like study design
 - 300 individuals with t= 0.5, 1.25, 2, 4, 9, 24

⁴Kappelhoff et al. Clinical pharmacokinetics, 2005

Genetic settings

Introduction

- Generation of genotypes using HAPGEN 5
 - N_s =1227 snps on 171 genes from the DMET Chip ⁶
 - 6 [1-56] snps per gene
 - HAPMAP caucasian reference haplotypes
- Alternative hypothesis H_1 =presence of a genetic effect
 - 200 simulated data sets
 - 6 unobserved causal variants with allele frequency, p_s
 - decrease in log(CL/F) with allele dosage
 - varying genetic component of interindividual variability

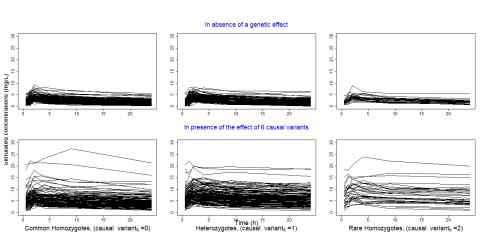
$$R_{Gs} = \frac{\beta_s^2 \times 2p_s(1 - p_s)}{\beta_s^2 \times 2p_s(1 - p_s) + \omega_{CL/F}^2} = (1, 2, 3, 5, 7, 12)' \%$$

$$R_G = \sum_{s=1}^{6} R_{Gs} = 30\%$$

⁵Su et al. Bioinformatics, 2011

⁶Daly et al. Clinical Chemistry, 2007

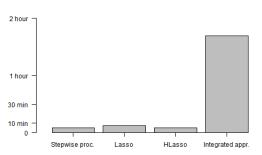
A typical simulated dataset



Computing times

Introduction

In absence of a genetic effect

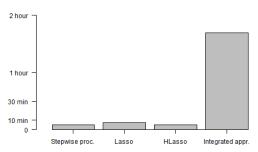


j.bertrand@ucl.ac.uk PAGE 13/06/13 11 /15

Computing times

Introduction

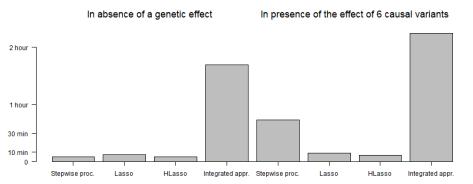
In absence of a genetic effect



- Similar computing times for 2-stage approaches
- Integrated approach
 - HLasso run at each

4 D > 4 A > 4 B > 4 B > B 900

Computing times



- Similar computing times for 2-stage approaches
- Integrated approach
 - HLasso run at each SAEM iteration

- Slight increase for all methods
- Stepwise proc. = 10 times longer run times under H_1

 Introduction
 Objectives
 Methods
 Simulation study
 Results
 Discussion

 ○○
 ○○
 ○○
 ○○
 ○○

FWER and TP

False positives, FP

â				
	U			

	FWER(%)	IP	$FP_{CL/F}$	$FP_{Vc/F}$	$FP_{Q/F}$
Stepwise proc.	18.5	338 [302–374]	15 [7–23]	8 [2–14]	30 [19–41]
Lasso	18.5	311 [276–346]	12 [5–19]	18 [10–26]	11 [4–18]
HLasso	18	316 [281–351]	14 [7–21]	15 [7–23]	11 [4–18]
Integrated appr.	20	256 [225-287]	19 [10-28]	7 [2-12]	0

Family wise error rate, FWER= expected value of 20[14.5-25.5]%

True positive, TP=SNP in $r^2 \ge \! 0.05$ with causal variant; maximum, possible 1200

j.bertrand@ucl.ac.uk PAGE 13/06/13 12 /15

Introduction **Objectives** Methods Simulation study Results Discussion

FWER and TP

â			

	FWER(%)	TP	$FP_{CL/F}$	$FP_{Vc/F}$	$FP_{Q/F}$
Stepwise proc.	18.5	338 [302–374]	15 [7–23]	8 [2–14]	30 [19–41]
Lasso	18.5	311 [276–346]	12 [5–19]	18 [10–26]	11 [4–18]
HLasso	18	316 [281–351]	14 [7–21]	15 [7–23]	11 [4–18]
Integrated appr.	20	256 [225-287]	19 [10-28]	7 [2-12]	0

Family wise error rate, FWER= expected value of 20[14.5-25.5]% True positive, TP=SNP in $r^2 > 0.05$ with causal variant; maximum, possible 1200

False positives, FP

■ target FWER of 20% achieved with all methods

Introduction **Objectives** Methods Simulation study Results Discussion

FWER and TP

â			

	FWER(%)	TP	$FP_{CL/F}$	$FP_{Vc/F}$	$FP_{Q/F}$
Stepwise proc.	18.5	338 [302–374]	15 [7–23]	8 [2–14]	30 [19–41]
Lasso	18.5	311 [276–346]	12 [5–19]	18 [10–26]	11 [4–18]
HLasso	18	316 [281–351]	14 [7–21]	15 [7–23]	11 [4–18]
Integrated appr.	20	256 [225-287]	19 [10-28]	7 [2-12]	0

Family wise error rate, FWER= expected value of 20[14.5-25.5]%

True positive, TP=SNP in $r^2 > 0.05$ with causal variant; maximum, possible 1200 False positives, FP

- target FWER of 20% achieved with all methods
- Integrated approach
 - lower TP count

Introduction Objectives Methods Simulation study Results Discussion

	FWER(%)	TP	$FP_{CL/F}$	$FP_{Vc/F}$	$FP_{Q/F}$
Stepwise proc.	18.5	338 [302–374]	15 [7–23]	8 [2–14]	30 [19–41]
Lasso	18.5	311 [276–346]	12 [5–19]	18 [10–26]	11 [4–18]
HLasso	18	316 [281–351]	14 [7–21]	15 [7–23]	11 [4–18]
Integrated appr.	20	256 [225-287]	19 [10-28]	7 [2-12]	0

False positives, FP

True positive, TP=SNP in $r^2 > 0.05$ with causal variant; maximum, possible 1200

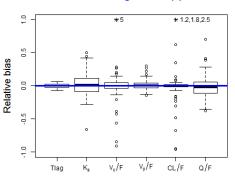
■ target FWER of 20% achieved with all methods

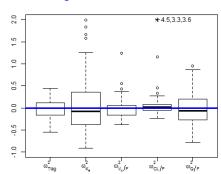
- Integrated approach
 - lower TP count
 - lower FP count on Vc/F and Q/F

Family wise error rate, FWER= expected value of 20[14.5-25.5]%

Estimation performance

Integrated approach in absence of a genetic effect

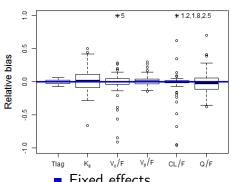


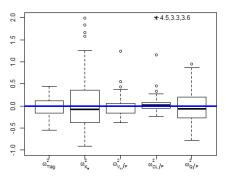


Introduction Objectives Methods Simulation study Results Discussion

Estimation performance

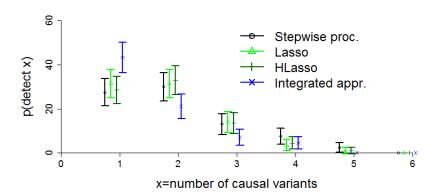
Integrated approach in absence of a genetic effect





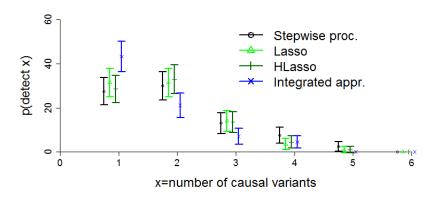
- Fixed effects
 - less than 3% Rbias and RRMSE from 3-15%
- Variances
 - less than 5% Rbias and RRMSE from 20-50%

Power to detect multiple variants



j.bertrand@ucl.ac.uk PAGE 13/06/13 14 /15

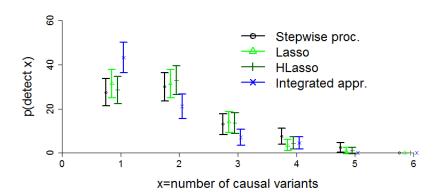
Power to detect multiple variants



■ None of the approaches select the 6 causal variants

j.bertrand@ucl.ac.uk PAGE 13/06/13 14 /15

Power to detect multiple variants



- None of the approaches select the 6 causal variants
- Integrated approach favours more parsimonious models

j.bertrand@ucl.ac.uk PAGE 13/06/13 14/15

Discussion

Introduction

- Realistic simulation study
 - feasability of combining large SNPs set and NLME model
 - chosen FWER of 20% to enable power comparisons
 - analyses for exploratory purposes
 - further functional studies required
- Integrated approach
 - + full model-based approach
 - + less false positives
 - longer computing times
 - less powerful to detect multiple SNPs
- Future works
 - influence of shape parameter
 - \blacksquare larger shape parameter \rightarrow Lasso
 - full Bayesian approach

Acknowledgements

Introduction

- saemix R packageDr Emmanuelle Comets
- UCL Genetics Institute
- London Pharmacometrics Interest Group

j.bertrand@ucl.ac.uk PAGE 13/06/13 16 /15

Asymptotic approximation to set γ

Introduction

$$\begin{split} \frac{sign(\beta_p=0^+)(2\lambda+1)}{\gamma} \frac{D_{-(2\lambda+2)}(\frac{|\beta_p=0^+|}{\gamma})}{D_{-(2\lambda+1)}(\frac{|\beta_p=0^+|}{\gamma})} &= \Phi^{-1}(1-\alpha/2)\sqrt{\frac{N}{\delta_p}}\\ \delta_p &= \mathrm{VAR}(s_{p.k})/\omega_p^2\\ \mathrm{reflects\ the\ design\ information}\\ \mathrm{VAR}(s_{p.k}) \ll \omega_p^2 \to \mathrm{\ increases\ penalisation}\\ \mathrm{VAR}(s_{p.k}) \ \mathrm{derived\ using\ Batch\ means\ method} \end{split}$$