

A comparison of performance between parametric and nonparametric estimation for nonlinear mixed-effects models

Shijun Wang, Andrew Hooker, Mats O Karlsson Uppsala University, Uppsala, Sweden

Questions

- •For real data examples with models developed based on parametric methods, can nonparametric estimation offer
 - -better description of data?
 - -better prediction of new data?

Estimation methods

Parametric (P): FOCE(I)/Laplace in NONMEM

-But models also evaluated with Importance sampling

Nonparametric (NP): \$NONP in NONMEM
But models also estimated with the extended grid method

Models and data

• PK (n=16) and PD (n=7) model based on real data

Comparisons – description of data

•∆OFV(P-NP)

• △AIC = △OFV(P-NP) + 2·△#parameters(P-NP)
—#parameters(P) = 2·#etas + #covariance terms

-#parameters(NP) = (#support points)·(#etas+1)-1

• Δ OFV(P-NP) vs reference distribution for Δ OFV(P-NP) when simulating from parametric models and refit with P & NP

Comparisons – prediction of new data

• Δ XVOFV (Cross-validated OFV)

Why compare based on OFV?

• Why not compare prediction error of concentrations/effects?

-OFV incorporates this, but also accounts for:

- Heteroscedasticity in residual error magnitude
- Correlation among observations within individuals

–Not unambigous what "a" prediction is with NP distribution, OFV is calculated taking the full NP distribution into account

$\Delta OFV(P-NP)$ reference distribution

Observed $\triangle OFV(P-NP)$ vs reference distribution for $\triangle OFV(P-NP)$

Percentile of $\triangle OFV$ in reference distribution

Use of NP information to improve parametric model

•Covariance terms

-When NP indicates correlations unaccounted for in P

• Mixture models

–When NP indicates multimodality

 Semi-parametric models with estimated shape parameter(s)

–When NP indicate skewed or heavy-tailed distributions

Estimated NP distribution - gentamicin PK model (Nsubj=210)

Estimated NP distribution gentamicin PK models on split data set

$\Delta xvOFV$ versus density metric

Conclusions

•For the studied models, data and methods:

-NP fit is better than fit of P

-Accounting for parsimony, P fit typically better than NP fit

-P better than NP for predicting new data

What if we had used NPAG?

- • ΔOFV
 - -NPAG likely to be better than \$NONP
 - -NPAG 1-step estimation
 - -\$NONP 2-step estimation (location, probability)
- •∆AIC
 - -NPAG likely to be better than \$NONP
 - -#parameters(NPAG) < #parameters(\$NONP)</pre>
- \Delta xvOFV

-Not clear (fewer Nsupp of NPAG unlikely an advantage)

DDMoRe Model Repository repository.ddmore.eu

		Register Login				م
	BROWSE SUBMIT SUPPORT REQUEST CERTIFICA	TION				
Models						
loueis						10 20 50
Submission ID	Name	Format	Submitter	Submitted	Modified ~	Certification
DDMODEL00000119	Bender_2012_thrombocytopenia_TDM1	PharmML 0.8.x	Paolo Magni	2015/12/12	2016/10/13	5
DDMODEL00000224	Kloft_2006_myelosuppression_docetaxel	Original code	Ida Netterberg	2016/10/12	2016/10/13	5
DDMODEL00000110	Magni_2000_diabetes_C-peptide	PharmML 0.8.x	Paolo Magni	2015/12/11	2016/10/13	5
DDMODEL00000225	PKPD model for ciprofloxacin	PharmML	David Khan	2016/10/13	2016/10/13	5
DDMODEL00000222	Hansson_2013_Fatigue_GIST	Original code	Pierrillas Philippe	2016/10/11	2016/10/12	5
DDMODEL00000223	Novakovic_2016_multiplesclerosis_cladribine_irt	Original code	Ana Novakovic	2016/10/12	2016/10/12	\$
DDMODEL00000221	Schindler_2016_SLD_SUV_OS_GIST	Original code	Emilie Schindler	2016/10/11	2016/10/12	5
DDMODEL00000220	Jonsson_2011_ethambutol_pharmacokinetics	Original code	Siv Jonsson	2016/10/11	2016/10/12	
DDMODEL00000111	Magni_2004_diabetes_IVGTT	PharmML 0.8.x	Paolo Magni	2015/12/11	2016/10/11	Σ
DDMODEL00000217	Tumour size dynamics model for ovarian cancer patients	Original code	Ivelina Gueorguieva	2016/10/07	2016/10/11	Σ

Showing 31 to 40 of 109 models

First 두 4 5 6 7 8 🗬 Last

Help

Thank you!