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�Physiology-based pharmacokinetic (PBPK) 
models are currently under scrutiny for 
predicting the pharmacokinetics in preclinical 
models and in humans [1-8].

Fig.1. Scheme of the basic whole body PBPK model.

�The basis of the implementation of PBPK in 
this area is the predictions of the clearance 
contributions (using intrinsic clearance from 
liver preparations) and of the tissue partition 
coefficients. Some in silico approaches have 
been proposed for predicting the tissue 
partition coefficients, based on lipophilicity
(logP), acid-base characteristics, and fraction 
of drug unbound in plasma [8-13].
�This approach has some rigidity as it is 
influenced by assumptions on drug-specific 
parameters, which may be violated in some 
cases. For instance, the fraction of drug 
unbound in tissues is calculated as a function 
of the fraction unbound in plasma only [1] and 
there are uncertainties regarding the influence 
of the binding to plasma and liver preparations 
for the scaling of the total clearance. 
�In addition, in the currently proposed 
approaches, in vivo pharmacokinetic in 
preclinical species are only used to confirm 
that the in silico methodologies are able to 
predict the PK characteristics in animals [6], 
whilst these data are not used for actually 
performing the human predictions.

We are proposing and evaluating a PBPK 
approach in which all the non-clinical 
information are considered. A Bayesian 
approach was applied to in vivo preclinical data
to identify a few critical parameters known with 
some uncertainty, thereby relaxing some 
assumptions and possibly improving the 
predictive performance of the basic PBPK. We  
evaluated the performance of such approach to 
predict human pharmacokinetics. 

�A basic, generic whole body PBPK model was 
implemented for  rats, dogs and humans 
(Fig.1). 
�Hepatic clearance CLH and tissue partition 
coefficient PT:P were computed as follows:

where CLint,H = intrinsic clearance from liver preparations, fuP = 
fraction of drug unbound in plasma, fuH = fraction of drug 
unbound in liver preparations, QH=blood flow perfusing the 
liver;

where Po:w=n-octanol:water partition coefficient, VwT, VnlT, VphT
are fractional weight of water, neutral lipids and phospholipids
in tissue T, respectively, VwP, VnlP, VphP are the corresponding 
values in plasma, fuT = fraction of drug unbound in the tissue, 
and where:

�The predictive performance of the basic 
model in these species was initially evaluated 
using a dataset of 23, 21 and 8 compounds for 
rats, dogs and humans, respectively.
�A Bayesian approach, as implemented in 
SAAM II™ 1.1.2 (SAAM Institute, University of 
Washington, Seattle) was used to identify a 
few critical parameters, known with some 
uncertainty, to provide a better adherence of 
the predictions in rats and dogs with the 
corresponding observations. 
�The parameters considered critical (after a 
sensitivity analysis on the PBPK model) and to 
be identified using the Bayesian approach 
were: fuP, PO:W, c and fuP/fu,H

�The parameters identified in rats and dogs
were used to simulate the pharmacokinetics in 
human subjects.

Six of the eight compounds given to humans 
were reasonably well predicted in the preclinical 
species. For these compounds the statistics 
obtained for human predictions improved 
significantly applying the new approach, 
compared to the basic one.
Table 2. Performance statistics for the basic and new approach 

applied to the PK prediction of oral dosing in humans for six 
compounds

�The predictions from a basic  PBPK model 
were improved applying a Bayesian approach 
by fine tuning a few model parameters based 
on in vivo animal data. The results obtained so 
far are promising; however, they need to be 
confirmed on a more extensive dataset of 
compounds.
�It may be too optimistic to provide a  generally 
applicable ‘receipt’ to the prediction of the 
pharmacokinetics in humans. The approach 
need to consider the specificities of each 
compound. The knowledge obtained from the 
evaluation of compounds of the same class 
should also be considered. 
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For the other two compounds, the PBPK 
predictions obtained in humans with the 
original inputs were strongly biased. Applying 
the new approach the bias was  reduced (from 
55 to 8-fold and from 385 to 39-fold for the 
prediction of AUC), even if it remained 
unacceptably high. Causes of this high bias 
were the dynamic range of the intrinsic 
clearance estimation for one compound and 
the involvement of transporters in the 
disposition of the other compound. 

2.12.00.430.243.90.005New approach

7.51.21.000.504.10.004Basic approach

AUCCmaxfuP/fuHclogPfuP

fold errorcritical inputs

�The basic model applied to the preclinical 
species showed average fold-errors for the 
main pharmacokinetic parameters of less than 
2, with 91% of the compounds predicted within 
a 3-fold error.
�The new approach is summarized in Fig. 2.

Fig.2. Scheme of the application of the new approach

Table 1. Modulated parameters and performance evaluation for 
the basic and new approach applied to the compound 

described in Fig. 2.
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