Application of the optimal design approach to improve pre-transplant drug monitoring for cyclosporine

Stefanie Hennig, Joakim Nyberg, Samuel Fanta, Andrew Hooker, Mats O. Karlsson

Division of Pharmacokinetics and Drug Therapy
Department of Pharmaceutical Biosciences
Uppsala University
Procedures in Finland during paediatric renal transplantation

Transplantation

CyA iv test
CyA po test

CyA iv therapy
CyA po therapy

Knowledge gained used to individualize therapy initiation
Previous design

- 162 IV patients & 89 PO patients (77 with both) were collected (1988-2005)
 - During this time; individual models were used to predict 1st iv and 1st oral post transplant dose

- In 2007 a Population PK model was published by Fanta et al*

Aim

• Reduce and optimise the pre-transplant cyclosporine monitoring design for an analysis of individual parameters which used priors from the population model

• Work within clinical restrictions
Clinical Restrictions

- Maximum of 3 samples per dose
- Maximum total cyclosporine dose (IV+PO) of 10 mg/kg
- Maximum infusion rate for IV: 0.75 mg/kg/h
- Fit both doses IV+PO within 8 hour time limit
What can we optimize on?

- Sampling times IV, PO
- Doses IV, PO
- Durations of infusion for IV
- Start of second dose
- IV first then PO and vice versa
Methods used

• 8 individual parameters (EBEs) transformed to fixed effect parameters
• Continuous distributions (variances of parameter distributions) to represent prior information on the *individual level*
• Discrete distributions for ED-sampling
• Optimization of all design variables simultaneously
• WT as covariate, Doses were optimized as mg/kg

• ED_{s}-optimality used for following parameter subsets of interest:
 – EBEs of CL and F only
 – EBSs of all 6 parameters
 – EBEs of all 6 parameters and 2 of the RUV (eta on eps)

• Sampling windows
• Efficiency loss compare to previous rich design

• Optimization was performed in PopED v.2
Methods
ED samples from discrete distributions

• Optimization across a discrete distribution of 77 individual parameter vectors

• Includes correlation between parameters

• Reflect future patients distribution, however bias to previous patients

• η-Shrinkage was on average 6%
Methods
Focus on some parameters (CL & F)

- Focus on CL and F as during chronic dosing
 - Average concentration = Dose rate \times \frac{F}{CL}

Assume all other known
Methods
Focus on some parameters (CL & F)

- Focus on CL and F as during chronic dosing
 - Average concentration = Dose rate * F / CL

<table>
<thead>
<tr>
<th>CL</th>
<th>F</th>
<th>V3</th>
<th>Q3</th>
<th>V2, Q4, V4</th>
<th>Ka</th>
<th>RUV IV</th>
<th>RUV PO</th>
</tr>
</thead>
</table>

Not of interest
Methods
ED$_s$ - optimality

\[
ED_s = \max \left(E \left[\left| \frac{\text{FIM}_{\text{total}}}{\text{FIM}_{\text{uninteresting}}} \right| \right] \right)
\]

- The smaller the $|\text{FIM}_{\text{uninteresting}}|$ the larger the D_s

- Keeps correlation between all parameters of the model compared to not including certain parameters in the FIM calculation (fixing parameters)

Results

Designs optimized for CL & F

<table>
<thead>
<tr>
<th>Sampling Times</th>
<th>IV PO design</th>
<th>PO IV design</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>2.33</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>2.81</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td>3.98</td>
<td>8.00</td>
</tr>
<tr>
<td>PO</td>
<td>4.71</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>8.00</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>8.00</td>
<td>2.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other design variables</th>
<th>IV PO design</th>
<th>PO IV design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose IV (mg/kg)</td>
<td>1.05</td>
<td>3.00</td>
</tr>
<tr>
<td>Dose PO (mg/kg)</td>
<td>8.95</td>
<td>7.00</td>
</tr>
<tr>
<td>Infusion time</td>
<td>1.41</td>
<td>4.00</td>
</tr>
<tr>
<td>Infusion Rate</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Time of second dose</td>
<td>4.00</td>
<td>3.04</td>
</tr>
</tbody>
</table>
Results
Comparison to previous designs

- Showing the individual expected precisions (CVs) obtained from PopED

<table>
<thead>
<tr>
<th></th>
<th>Original design Individual</th>
<th>Optimal design</th>
<th>Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IV PO design</td>
<td>PO IV design</td>
</tr>
<tr>
<td>V3</td>
<td>26.2%</td>
<td>41.1%</td>
<td>40.1%</td>
</tr>
<tr>
<td>Q3</td>
<td>18.0%</td>
<td>30.2%</td>
<td>31.0%</td>
</tr>
<tr>
<td>V2 Q4 V4</td>
<td>53.9%</td>
<td>34.7%</td>
<td>37.9%</td>
</tr>
<tr>
<td>CL</td>
<td></td>
<td>6.7%</td>
<td>9.3%</td>
</tr>
<tr>
<td>KA</td>
<td>21.1%</td>
<td>19.4%</td>
<td>19.0%</td>
</tr>
<tr>
<td>F</td>
<td>10.8%</td>
<td>13.5%</td>
<td>13.5%</td>
</tr>
<tr>
<td>EPS RUV IV</td>
<td>20.5%</td>
<td>29.6%</td>
<td>29.6%</td>
</tr>
<tr>
<td>EPS RUV PO</td>
<td>22.5%</td>
<td>32.1%</td>
<td>32.1%</td>
</tr>
</tbody>
</table>
• Comparison of the efficiency of the reduced optimal vs. the Rich Design Individual

\[
\text{Efficiency} = \left(\frac{|FIM_{\text{total}}|}{|FIM_{\text{uninteresting}}|} \right)^{1/s}_{\text{optimal reduced design}} \div \left(\frac{|FIM_{\text{total}}|}{|FIM_{\text{uninteresting}}|} \right)^{1/s}_{\text{original full design}}
\]

• Efficiency \(\sim 47\% \)
Results
Sampling and Dose windows

- Defining windows and then calculating the efficiency for 100 samples from the windows

- Efficiency reduction of 5-10% when applying sampling windows, further 3% efficiency reduction with dose windows
Conclusions

• A new method were developed for optimization of EBEs with inclusion of prior information

• Multiple design variables were optimized simultaneously

• Reduction to 6 blood samples within 8 hours possible including constrains and sampling/dose windows for clinical practicality

• CVs on the EBEs for CL and F could be reduced on average by 60% compared to the Prior information

• The gain of performing the Rich Design compared to the optimal reduced designs with regards to the precision of the parameters is small
Acknowledgements

Kalle Hoppu