

High-throughput genetic screening and pharmacokinetic population modeling in drug development

Tessier A^{1,2}, Bertrand J³, Fouliard S², Comets E¹, Chenel M²

1. Univ Paris Diderot, Sorbonne Paris Cité, UMR 738, F-75018 Paris, France and INSERM, UMR 738, F-75018 Paris, France 2. Clinical Pharmacokinetic Department, Institut de Recherches Internationales Servier, Suresnes, France

3. University College London, Genetics Institute, London, UK

CONTEXT

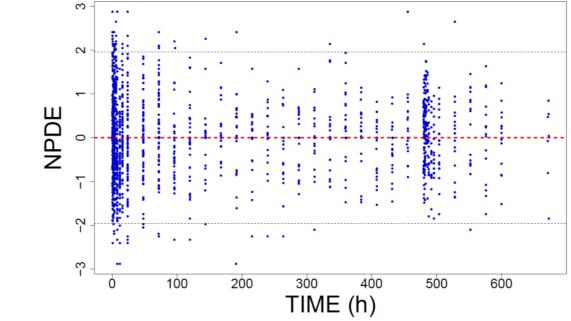
- Drug S is currently in phase I in SERVIER laboratories.
- In order to follow the EMA recommendations [1], a large number of genetic variants have been genotyped, with two consequences:
 - this number is superior to the number of subjects,
 - some of these variants are correlated due to linkage disequilibrium.

We expect the genetic part of Drug S variability to be shared among several polymorphisms with low to intermediate effect sizes [2].

OBJECTIVES

- To develop a population PK model.
- To build the covariate model using a stepwise model \bullet selection algorithm adapted to genetic variant features.

- **176 Single Nucleotide Polymorphisms (SNPs):**
- genotyped using specific SERVIER DNA microarrays,
- 39 genes chosen for their known implication in drugs pharmacokinetics.

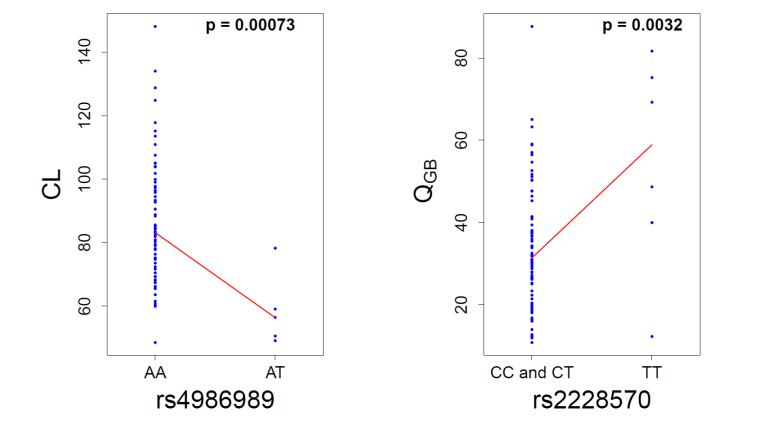

Population Pharmacogenetic Analysis

We applied a **stepwise method** inspired by Lehr et al [5]:

- Univariate regression on Empirical Bayes Estimates:
 - a Wald test was applied with a Bonferroni correction,
 - using 3 different genetic models (additive, dominant and recessive),
 - in **PLINK 1.07** [6].

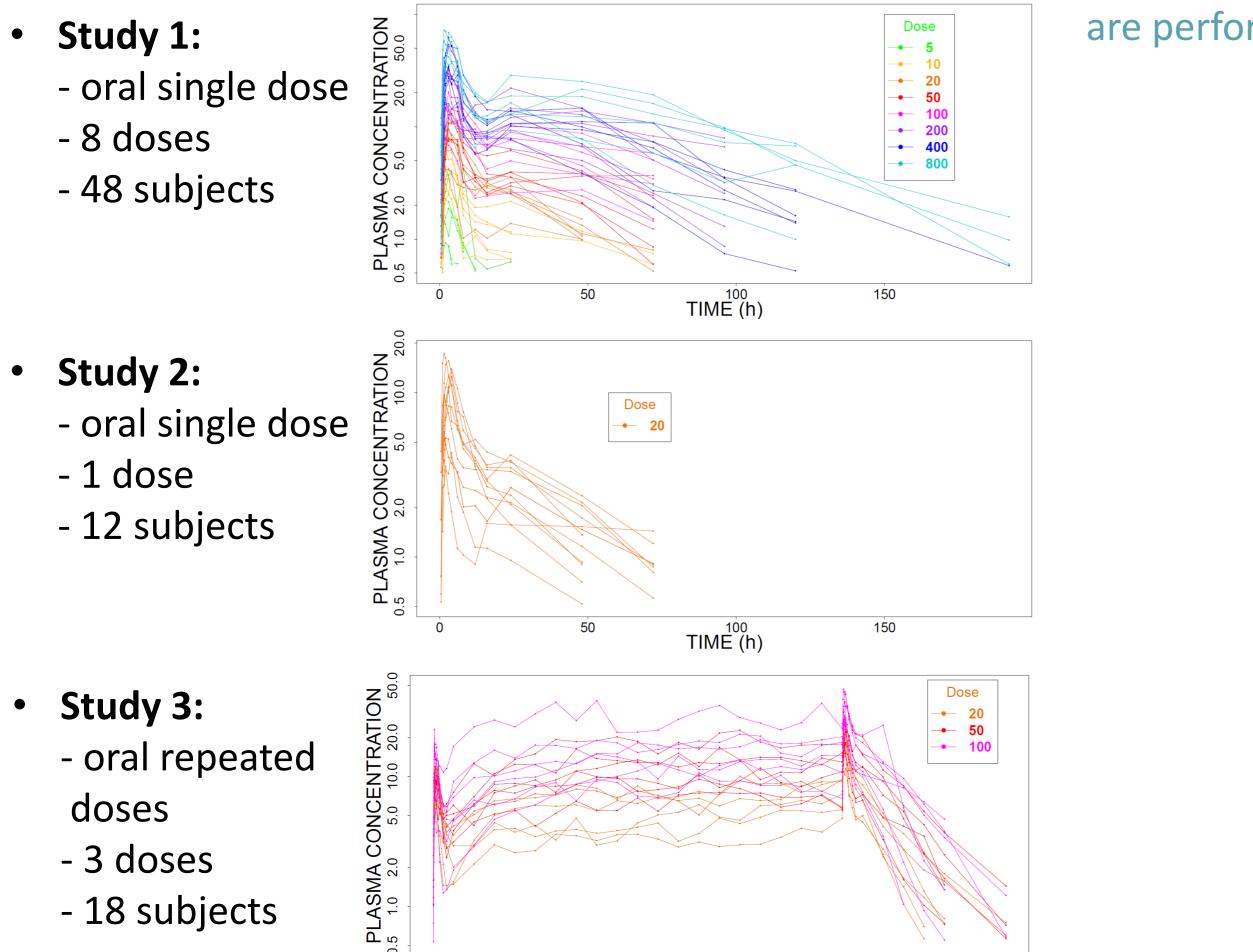
Pharmacogenetic data

Accounting for **linkage disequilibrium**: - **strong correlation** (r² > 0.8) among selected SNPs

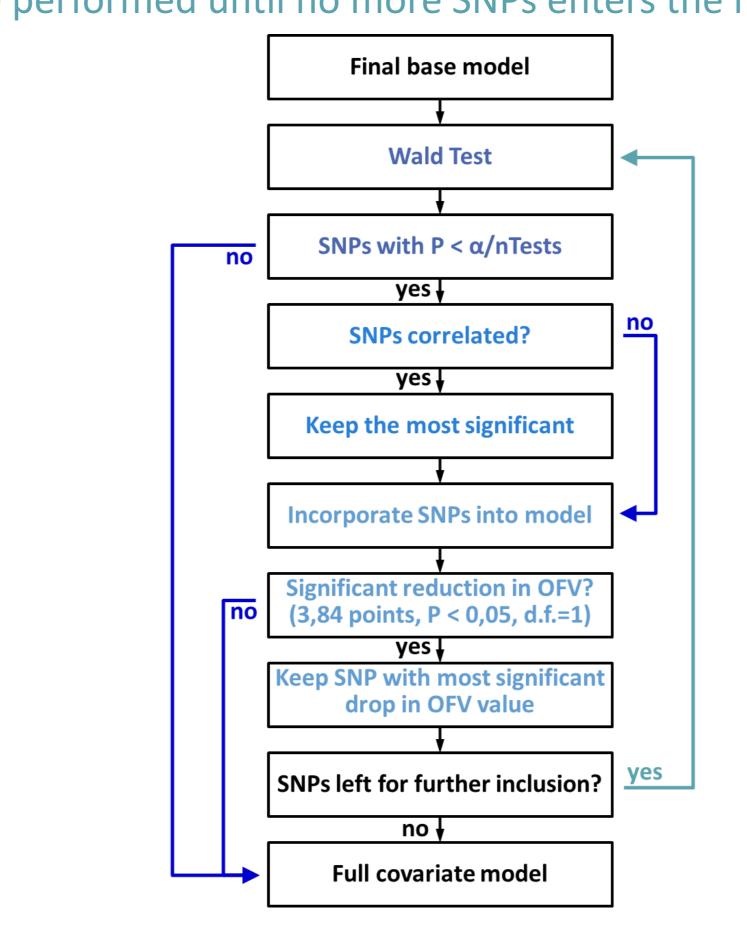

Evaluation Internal scatterplot of NPDE versus time

ERVIER

- **Good description** of drug S concentration.
- Selected model **describes the observed rebound**.


Pharmacogenetic Results

SNPs Impact on Individual Parameters


METHODS

Pharmacokinetic data

- only the most significant is kept.
- **Forward inclusion** in the model:
- for each SNPs issuing the screening step,
- using a Likelihood Ratio Test.

This two steps (i. screening and ii. model inclusion) are performed until no more SNPs enters the model.

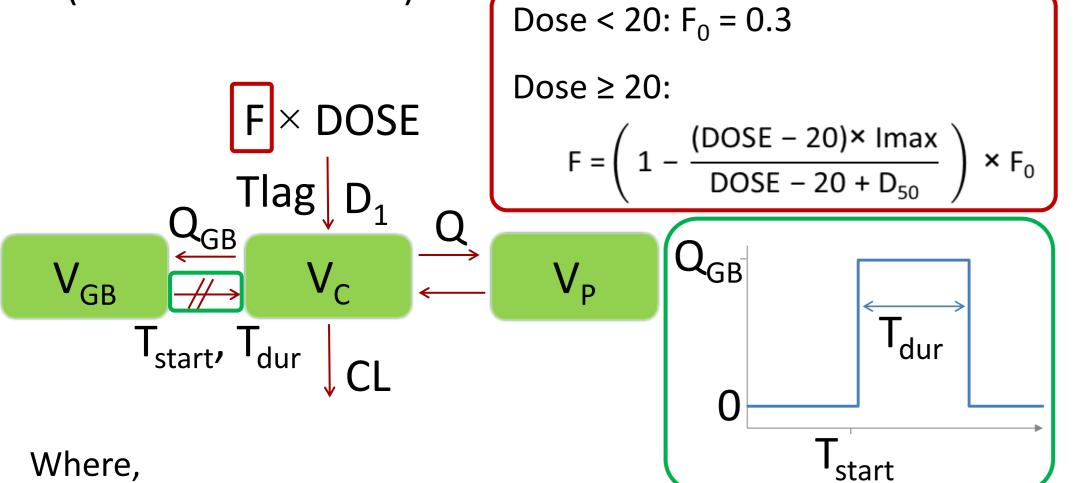
Gene Effect - plot of the effect of the SNP rs4986989 on CL according to an additive model (AA: common homozygotes; AT: heterozygote ; rare homozygotes TT have not been observed), and the SNP rs2228570 on Q_{GB} according to a recessive model (CC and CT: respectively common homozygotes and heterozygotes; TT: rare homozygotes)

- The screening step on EBEs allows to detect the impact of two SNPs:
 - a marker of **metabolic enzyme NAT-1** on CL,
 - a marker of **nuclear receptor VDR** on Q_{GR}.
- Both markers are not correlated:
 - positioned on chromosome 8 and 12 respectively for NAT and VDR.

Inclusion of SNP in the Model

- The covariates model: $\theta_i = \theta \times e^{SNP.\beta} \times e^{\eta_i}$ - SNP = {0, 1 or 2}: the genotype,
 - β : impact coefficient.

rs2228570 as covariate on QGB:


Individual Concentrations Profiles - Concentrations versus time profiles in log scale for each subject

Population Pharmacokinetic Analysis

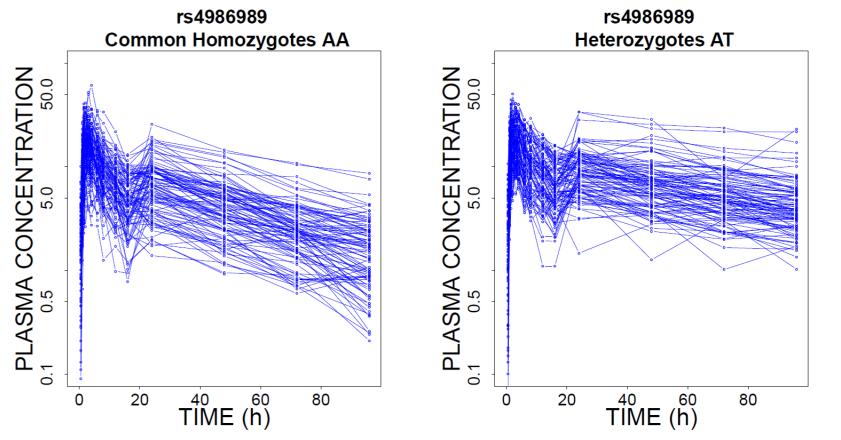
- FOCE-I algorithm in **NONMEM 7.2** [3].
- Exponential model for the random effects.
- Combined error model.
- Model evaluation using individual fits and normalized prediction distribution error (NPDE) [4].

Drug S Proposed Model

- PK profile showed a rebound at approximately 24h: - described assuming an enterohepatic circulation (EHC[◊]).
- Non-linearity in the PK with dose:
- modeled through a bioavailability-dose Imax model (with fixed baseline).

RESULTS

Pharmacokinetic Results


	Population	InterIndividual	IntraIndividual
	Prediction	Variability in %	Variability in %
	(RSE%)	(RSE%)	(RSE%)
F	lmax = 0.919 (0.55)	46.90 (26.4)	13.20 (29)
	D ₅₀ = 53 (26)		
D_1	2 (7)	30.80 (58.2)	28.60 (41.5)
ГІад	0.387 (6.7)	38.70 (23.5)	
V _c	1640 (6.2)		
Q	242 (18.5)	89.10 (33.2)	
$V_{ ho}$	1960 (8.6)		
CL	89.3 (8)	26.80 (31.7)	18.90 (14.2)
T _{start}	23.9 (fixed)		
T _{dur}	0.5 (fixed)		
V_{GB}	6.19 (fixed)		
Q_{GB}	39.4 (fixed)	65 (31.9)	
, Dinter	0.241 (9.5)		
slope	15.80% (2.8)		

Parameter Estimates (Relative Standard Error) - All parameters are estimated with good precision

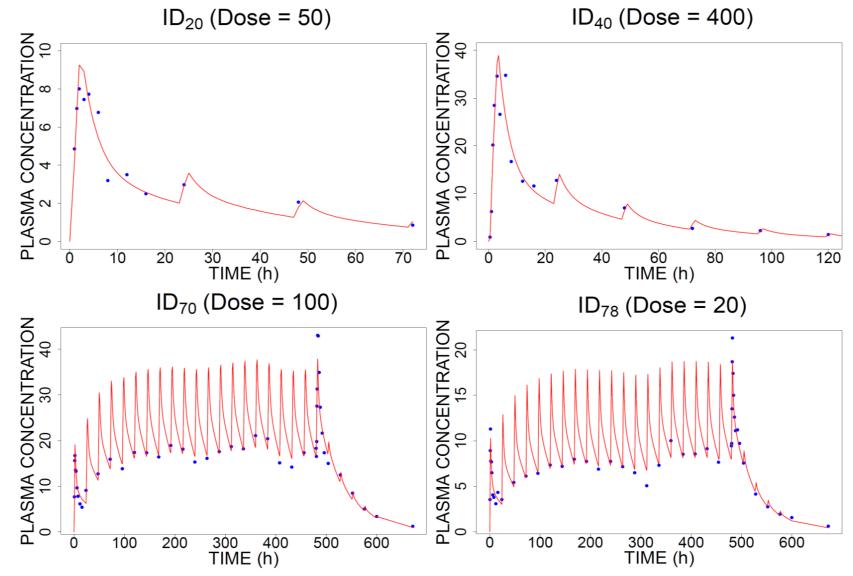
- A first model was developped on single dose studies. ullet
- The addition of data from repeated doses study makes the EHC parameters unidentifiable since new administrations mask the rebound:

- No decrease in the objective function value (OFV).
- rs4986989 is included as covariate on CL:
 - Significant decrease of OFV (Δ OFV=-26),
 - explains 19% of CL variability.

Only SNP rs4986989 remains in the final covariate model.

Simulated PK Profiles - Simulation of 100 rs4986989 common homozygotes and 100 rs4986989 heterozygotes from the covariate model

DISCUSSION


- CYP3A4, 2D6 and 1A2 metabolize Drug S (*in vitro*): - None of the corresponding markers were detected by the Wald test in the univariate step.
- The involvement of NAT1 and VDR in the Drug S PK must be confirmed by *in vitro* studies. The stepwise method:

- Where,
- : bioavailability (expressed in terms of parameters Imax and D_{50})
- : zero order absorption D_1
- : lag-time on absorption Tlag
- : central compartment volume
- Vp : peripheral compartment volume
- : intercompartmental clearance between V_c et V_p Q
- : gallbladder compartment volume V_{GB}⁰
- : intercompartmental clearance between V_c et V_{GB} Q_{GB}

[•]EHC parameters

- : gallbladder emptying time T_{start}
- : gallbladder emptying duration T_{dur} •

- $T_{\text{start}},\ T_{\text{dur}},\ Q_{\text{GB}}$ and V_{GB} were set to the values estimate with single dose data.

Individual predictions versus Time - observation (•) and model predictions (—) for 4 subjects

- reduces the number of genetic variants to include in the model,
- takes into account the correlation between these variants,
- is limited by the small number of subjects: \bullet

- lack of power,

- absence of the less frequent mutations.

CONCLUSION

The combination of NonLinear Mixed Effects Model and Genetic statistic methods allows:

- to describe the complex pharmacokinetics of drug S (nonlinearity, EHC),
- to explore the effect of many SNPs on separate phases of the ADME process and thereby accurately predict its effect on the drug PK.

[1] EMA. *Draft* 2010 [2] Manolio et al. *Nature* 2009

[3] Sheiner LB et al. *Computers and Biomedical Research* 1972 [4] Brendel K et al. *Pharmaceutical Research* 2006

[5] Lehr T et al. *Pharmacogenetics and Genomics* 2010 [6] Purcell S et al. American Journal of Human Genetics 2007