PROPOFOL BREATH MONITORING AS A POTENTIAL TOOL TO IMPROVE THE PREDICTION OF INTRAOPERATIVE PLASMA CONCENTRATIONS.

1 Laboratory for Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
2 Department of Anesthesia, University Medical Center Groningen, Groningen University, The Netherlands
3 Department of Anesthesia, Ghent University, Ghent, Belgium
4 Department of Anesthesiology, Klinikum der Universität München, Germany
5 Department of Epidemiology and Biostatistics, UCSF, CA, USA

1. Introduction & Objectives

Monitoring of drug concentrations in breathing gas is routinely being used to individualize drug dosing for the inhalation anesthetics. For intravenous anesthetics however, no decisive evidence in favor of breath concentration monitoring has been presented up until now. At the same time, questions remain with respect to the performance of currently used plasma PK models, implemented in target-controlled-infusion (TCI) systems. In this study we set out to investigate whether breath monitoring of propofol could improve the predictive performance of currently applied TCI models and to compare the feasibility of using IPREDbreath and IPREDplasma as driving force in a model to predict propofol induced changes in BIS.

2. Patients & Methods

20 healthy volunteers received 0.4 mg.kg-1.min-1 i.v. propofol for ten minutes followed by a 20 min recovery period. Afterwards, TCI based on Schneider et al.4 was used to achieve target plasma concentrations of 2, 3, 4, and 5 \textmu g.mL-1.

After data reduction and median filtering the dataset included a median of 22 arterial plasma propofol concentrations, 22 propofol breath concentrations and 30 BIS measurements per subject. NONMEM® (version 7.3) was used to fit different PKPD models to the dataset using, as a starting point, the individual post-hoc PK parameters from the Eleveld PK model3.

3. Results & Discussion

3.1 Model development for \(C_{\text{breath}} \)

- Final model: \(\text{IPRED}_{\text{breath}} = C_{\text{a}} \times K_{1} \times e^{\text{doseVar}} \times v \)
- An exponential time correction was introduced to correct for a time-dependent bias in the CWRES versus time. Physiological phenomena, such as venous-arterial mixing and/or detector-related issues might cause this time dependency and should be further investigated.

- GOF plot for the final model (model 8). Parameter estimates were obtained using the IPP approach. The top-left panel shows the apparent bias in the a priori PK model which is passed on to the population predictions for the breath concentrations (\(C_{\text{breath}} \)) of the final breath model.

3.2 Final models for \(C_{\text{breath}} \) & BIS

- Final parameter estimates and SEs for the final model (model 8) and for 2 models evaluating BIS as a function of the modelled plasma effect-side concentrations (\(C_{\text{a}} \)) and predicted breath concentrations (\(\text{IPRED}_{\text{breath}} \)) respectively.

- \(C_{\text{breath}} \) could serve as a surrogate to the predicted effect site concentrations which are frequently used in the clinic to predict BIS. In this respect, the EC\textsubscript{50} of 12.4 ppb might provide an alternative measurable target to the established hypothetical effect compartment EC\textsubscript{50} of 2.71 \textmu g.mL-1.

3.3 Bayesian forecasting to predict intraoperative propofol plasma concentrations

- Change in predictive performance (estimated using 4-fold X-validation) as a function of the time-frame in which \(C_{\text{breath}} \) are monitored.

- The MdPE and RMSE for the different individuals in our study are shown with a grey solid line. The solid red lines depict the overall change in predictive performance in our study population.

- MdPE decreased from 42.8% to 1.05% and RMSE decreased from 1.63 to 1.39 \textmu g.mL-1 (i.e. 15% reduction).

4. Conclusions

- On-line measurements of exhaled propofol concentrations improve the predictive performance of the current state-of-the-art pharmacokinetic model and allow a more stringent control on the targeted plasma concentrations during TCI guided general anesthesia.

- Individually measured exhaled propofol concentrations provide an easily measurable target which is closely correlated to the drug’s cerebral effects.

This work was published as: Colin et al. Clin.Pharmacokinet. DOI 10.1007/s40262-015-0558-z