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Background and Objectives

A recent evolution of the traditional PK models based on ordinary differential equations (ODEs) consists
in adding a system noise to the ODEs to account for more intra-individual variability (see [1], [2], [3]).
However, the frequently proposed linear SDE system turns out to be irrelevant.

The objectives of this contribution are :

• to present new SDE models that would best reflect the PK reality,

• to develop some specific maximum estimation procedure for the population parameters in these new
models.

Structural Model

Example : Bolus model

1 - ODE model

The time evolution of the quantity of
drug (Q) in the central compartment
is described by an ordinary differential
equation :

(1) dQ(t) = −k Q(t) dt
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Figure : Kinetics simulated according to equation (1) (k = 4).

2 - SDE model

A system noise is added to (1) to ac-
count for more intra-individual variabil-
ity(see [1], [2], [3]):

(2) dQ(t) = − k Q(t) dt + σ dW (t)
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Figure : Kinetics simulated according to equation (2) (k∗ = 4, σ = 2).

The kinetics simulated with the linear SDE model are irrelevant:
• provide an overly erratic description of the evolution of the drug concentrations
within the compartments of the human body

• do not comply with some constraints on the biological dynamics (sign, monotony)

3 - SDE model (2)

Assuming that the diffusion process ran-
domly perturbs the transfer rate con-
stants of the system is more realistic :

(3) dk(t) = (k∗ − k(t))dt + σdW (t)
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Figure : Simulated kinetics of k (k∗ = 4, σ = 4).

The time evolution of Q is then
given by

(4) dQ(t) = −k(t)Q(t)dt

Q(t) has an explicit expression :

Q(t) = Q(0)e−
∫ t

0 k(s)ds
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Figure : Simulated kinetics of Q (k∗ = 4, σ = 4).

Integrating process k allows a more accurate representation of the biological system : the
simulated kinetics are smoother.

4 - New parametrisation of SDE model (2)

Let’s introduce the following new process z. Model (3), (4) is equivalent to :

dk(t) = (k∗ − k(t)) dt + σ dW (t)(5)

dz(t) = k∗ dt + σ dW (t)

logQ(t) = k(t)− z(t)

This new parametrisation allows to come down to a linear Gaussian system, in which the Kalman filter
applies.

Statistical Model

Intra-individual model

dki(t) = (k∗i − ki(t))dt + σidWi(t)
dQi(t) = −ki(t)Qi(t)dt

Observations yij = log
(

Qi(tij)
Vi

)

+ γiǫij

Population appraoch : we assume some inter-individual variability on parameters k∗, V , γ, σ:

1 ≤ i ≤ n ; ψi = (k∗i , Vi, γi, σi)

ψi = h(φi) ; φi ∼ N (φpop,Ω)

Methodology

The SAEM algorithm is used for estimating the population parameters. This requires to compute p(yi|ψi).
By using system (5), it is possible to implement the Kalman filter for computing the conditional likelihoods
p(yi|ψi) and for estimating ki(t).

Simulation Study

1 - Design for the simulations

• n = 50 subjects

• 10 measurments per subject

• 1 dose at t = 0

• inter-individual variability on parameters k∗

and V : ψi = (k∗i , Vi)
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— Simulated kinetics

* Observations

Figure : Some simulated kinetics (semi-log scale).

2 - Results

Estimation of the population parameters

Parameter True value Estimated value s.e. r.s.e. (%)
k∗ 1 1.060 0.040 4
V 0.5 0.494 0.014 3
σ 0.5 0.444 0.084 19
γ 0.2 0.204 0.008 4

ω2k∗ 0.1 0.128 0.043 34

ω2V 0.1 0.104 0.033 33

Estimation of the individual kinetics (Kalman smoother)
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*Observations — Simulated kinetics — Estimated kinetics (semi-log scale)

Conclusion

•We have proposed a new category of mixed-effects models based on SDEs for PK modeling and our
maximum likelihood estimation procedure shows quite good practical properties.

•We aim to extend in a next future the present approach to more complex compartment models.

•Defining the transfer rate constants as stochastic processes often leads to highly non linear models, in
which the present estimation methodology based on the Kalman filter cannot be used. A SAEM based
method using the extended Kalman filter or a particle filter should rather be considered.
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