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Background and Objectives

A recent evolution of the traditional PK models based on ordinary differential equations (ODEs) consists
in adding a system noise to the ODEs to account for more intra-individual variability (see [1], [2], [3]).
However, the frequently proposed linear SDE system turns out to be irrelevant.

The objectives of this contribution are :

e to present new SDE models that would best reflect the PK reality,

e to develop some specific maximum estimation procedure for the population parameters in these new
models.

Structural Model

Example : Bolus model

1 - ODE model

The time evolution of the quantity of
drug (@) in the central compartment
is described by an ordinary differential
equation :

1) dQ() = —k Q(1) dt S S

A system noise is added to (1) to ac-
count for more intra-individual variabil-

ity(see [1], [2], [3]):

(2) dQ(t) = — k Q(t) dt + o dW(t)

The kinetics simulated with the linear SDE model are irrelevant:
e provide an overly erratic description of the evolution of the drug concentrations
within the compartments of the human body

e do not comply with some constraints on the biological dynamics (sign, monotony)

3 - SDE model (2)

Assuming that the diffusion process ran- 7 |
domly perturbs the transfer rate con-
stants of the system is more realistic :

(3)  dk(t) = (k* — k(t))dt + od W (¢)
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FIGURE : Simulated kinetics of @ (k* = 4,0 = 4).

Integrating process k allows a more accurate representation of the biological system : the
simulated kinetics are smoother.

4 - New parametrisation of SDE model (2)

Let’s introduce the following new process z. Model (3), (4) is equivalent to :

(5) dk(t) = (K™ — k(t)) dt + o dW (1)
dz(t) = k* dt + o dW ()
log Q(t) = k(t) — z(t)

This new parametrisation allows to come down to a linear Gaussian system, in which the Kalman filter
applies.

Statistical Model

Intra-individual model

dk;(t) = (k;k — k;(t))dt + o;dW;(t)
dQ;(t) = —k;(t)Q;(1)dt
Yij = log (Qi‘(/t.”)) + Yi€ij

(4

Observations

Population appraoch : we assume some inter-individual variability on parameters k*, V', v, o

1 <i<mn; =k, Vv, 05

Vi = h(@i) ; di ~ N(dpop, )

Methodology

The SAEM algorithm is used for estimating the population parameters. This requires to compute p(y;|;).
By using system (5), it is possible to implement the Kalman filter for computing the conditional likelihoods
p(v;|Y;) and for estimating k;(t).

Simulation Study

1 - Design for the simulations

e n. = 50 subjects .o
10 * 10’ . ' *

e 10 measurments per subject ‘s
el doseatt =20 N *

e inter-individual variability on parameters k*

and V' : ¢; = (K7, V) * *

log 1); ~ N(§bpopa Q)
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Simulated kinetics

* Observations

FIGURE : Some simulated kinetics (semi-log scale).

2 - Results

Estimation of the population parameters

Parameter True value Estimated value s.e. r.s.e. (%)
k™ 1 1.060 0.040 4
V 0.5 0.494 0.014 3
o 0.5 0.444 0.084 19
y 0.2 0.204 0.008 4
Wi, 0.1 0.128 0.043 34
wl‘ﬁ/ 0.1 0.104 0.033 33

Estimation of the individual kinetics (Kalman smoother)
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Conclusion

e We have proposed a new category of mixed-effects models based on SDEs for PK modeling and our
maximum likelihood estimation procedure shows quite good practical properties.

e We aim to extend in a next future the present approach to more complex compartment models.

e Defining the transter rate constants as stochastic processes often leads to highly non linear models, in
which the present estimation methodology based on the Kalman filter cannot be used. A SAEM based
method using the extended Kalman filter or a particle filter should rather be considered.
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