Which data are necessary to build a WB-PBPK model that
accurately predicts exposure in the lung? A case study using
ethambutol for tuberculosis treatment

L. Carrara?, P. Magni?, D. Teutonico?, O.Della Pasqua3*, F. Kloprogge?

1 Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia -
2 Clinical Pharmacokinetics and Pharmacometrics division, Servier, France
3 Clinical Pharmacology & Therapeutics Group, UCL, London, United Kingdom

— BMS

bioinformatics
mathematlcal modeling
and synthetic biology

4 Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, United Kingdom

Primary contact: letizia.carrara01®@universitadipavia.it

BACKGROUND. Characterising exposure
key feature of Whole-Body Physiologically—Based Pharmacokinetic (WB-
PBPK) models. However, it remains unclear which data are needed to
enable accurate predictions. To investigate this issue, ethambutol (EMB),
a drug used for pulmonary tuberculosis treatment, was used as paradigm
drug . The work aimed: 1) to develop a WB-PBPK model to predict EMB
lung concentration and, 2) to evaluate the predictive performance of the
WB-PBPK framework both for prospective evaluation of molecules in first-
in-human and in poor data scenarios, and for a retrospective analysis in
rich data scenarios.
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METHODS. The predictive performance of the PBPK framework was
in which data were added
progressively into model development, starting from in vitro and animal

evaluated based on scenarios,

experiments, up to human clinical trials.
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scenario scenario

the more the data available for model building are, the more precise the
exposure predictions are;

for drugs mainly excreted via the kidneys, such as EMB, information on
the renal elimination is needed to make reasonably accurate predictions.
Thus, both animal and human urinary data should be collected;
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excreted in urine was used [1].

Model was parameterised on mean data following the first EMB dose (IV:
15mg/kg, oral: 800, 1000, 1200 mg). Parameters were estimated via the
Monte Carlo-based method implemented in the PK-Sim [3] estimation
toolbox. Typical subjects with adequate biometrics and demographics
were used. Only one distribution model, identified on IV plasma and
urinary data was used (i.e., Rowland and Rodgers distribution model [4,5]).
Since EMB PK was linear, in scenarios 1-4 the predictive performances
were evaluated based on the 800 mg dose level only.
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* |n scenario 6 the observed and predicted plasma concentration profiles
at first dose and at steady state were compared considering
populations instead of mean data.

 Currently, emphasis is given to the mechanistic nature of WB-PBPK
models, but challenges still exist for the prospective use of the
approach with novel molecules, i.e., when full details of drug
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 QOur case study illustrates the bias in WB-PBPK model predictions
when supporting data on drug disposition are not available. This is
often the case during lead optimisation and candidate selection.

e Critical parameters and data to obtain accurate predictions were
identified, including permeability and metabolic route.

When the PBPK framework is used retrospectively, adequate
descriptions of drug disposition and distribution in tissues were

obtained, confirming the importance of the model building phase.




