
Background
Markov modeling is a powerful tool for
analyzing longitudinal categorical response
variables (i.e. chronic disease progression
through discrete disease stages), and have
gained increasing popularity recently,
particularly in the field of population PK/PD
modeling and simulation. The Goodness-of-fit
assessment of Markov models remains an active
on-going research topic[1, 2]. Simulation based
model evaluation tools (i.e. visual predictive
check, VPC) for Markov models has been used in
recent PK/PD publications [3]. Gentleman
proposed a goodness-of-fit approach by
comparing observed and predicted prevalence,
defined as counts/percentages of individuals
occupying each state at a particular time, for a
time-homogeneous Markov model [4].

A Casual Graphic Goodness-of-fit Assessment for Markov 
Pharmacodynamic Models

Xu (Steven) Xu and Partha Nandy
Advanced Modeling and Simulation, Global Clinical Pharmacokinetics & Clinical Pharmacology, 
Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, New Jersey, U.S.

Hypothetical Disease Progression 
Process

where 12(t) and 23(t) are the time-dependent
disease progression rates from stable to blast
and from blast to death, respectively; 12(t=0)
and 23(t=0) are the baseline progression
rates; and 12 and 23 represent the effects of
the biomarker process (x(t)) on the disease
progression. 12 = 0.3 and 23 = 0.01,
suggesting that a positive relationship between
the disease progression and the biomarker
levels.

Objectives
In PK/PD analysis, the time homogeneity of Markov
models usually does not hold because of inclusion of
time-dependent covariates. The objective of the
analysis was to apply Gentleman’s approach to
PK/PD Markov models that include time-dependent
covariates such as drug concentrations or

biomarker levels.

Methods
The analysis was done by simulating a hypothetical
chronic disease progression process over 1000 days
for 250 patients. Let us assume that the disease can
be categorized into and ordered with three states
(u): stable (u = 1), blast (u = 2), and death (u = 3).
Thus, two types of transition are possible for this
process: from stable stage to blast stage and from
blast stage to death. It is assumed that there is a
hypothetical biomarker for this disease, and can be
used to predict the disease progression. For
simplicity, we assume that the relationship
between the transition rates and the levels of the
biomarker follows an exponential growth function.

Once the simulated data is fitted with a Markov
model, the expected prevalence can be calculated
as the product of the total number of subjects
under observation at time t and the estimated
transition probability P1u(0, t) assuming all
subjects are at stable state at t = 0. For a time
inhomogeneous Markov model, the transition
probability, P1u(0, t), can be calculated by
multiplying a number of individual transition
probability matrices assuming the time-dependent
covariate can be approximated as piecewise-
constant:

P1 u(0, t) = P1u (0, t1) P1u (t1, t2)...P1u(tj-1, t)

Namely, time 0 to t is split into j equally spaced
time intervals and the covariate value is regarded
constant within each interval. The goodness of fit
can then be assessed by visually or numerically
comparing the observed prevalence occupying a
disease stage, Ou(t), at time t with the expected
number of subjects in that stage, Eu(t), at time t.

Figure 1. Observed vs. Predicted Prevalence Based 
on the Base Model without Covariates

Figure 2. Observed vs. Predicted Prevalence Based 
on the True Model with Time-dependent Covariates

Conclusions
Gentleman’s goodness-of-fit check for prevalence
can be used as an alternative graphic assessment
for PK/PD Markov models, in which
concentrations or biomarker levels serve as time-
dependent covariates. However, like simulation-
based VPC, the statistical significance of the model
deviation cannot be assessed formally by this
causal graphic approach.
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Results
The simulated data was analyzed by Markov
models implemented in NONMEM®. Two models
were fitted: a base model without any covariate and
a model with biomarker levels as the time-
dependent covariate. Compared to the base model,
the objective function value of the covariate model
was 129 points smaller.

The observed and predicted prevalence for each
disease state were overlaid and plotted over time
for each model to assess the goodness-of-fit
(Figures 1-2). The uncertainty in the predicted
prevalence over time was visualized by
constructing 95% confidence intervals around the
mean-predicted profiles.

Figure 1 demonstrates that the base model
underestimated the prevalence of subjects
occupying the stable stage at early times, whereas
overestimated the prevalence of subjects occupying
the blast stage during this time interval. The
expected prevalence across the study time from the
covariate (‘true’) model is much closer to the
observed prevalence (Figure 2). The biomarker
level in this simulation was assumed to increase as
the time increases. Without accounting for the
time-dependent covariate, the base model
prediction deviates from the data at early times.
The prevalence plots clearly showed the superiority
of the model with time-dependent covariate.
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