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CONCLUSIONS
Individualized regression yields a significant improvement over pooled methods, especially in the nonparametric case, which proved 
superior to all traditional parametric formulas. The adoption of individualized QT correction is therefore advised, in accordance with 
[1] as well as with [2-4]. Moreover, individualized correction by means of a population model provides robust correction formulas 
even when subjects are scarcely sampled, or when data is only available in certain RR regions.
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A novel nonparametric approach 
(Regularization) is proposed which 
exploits individual data to obtain 
regressions for each subject. 

A Bayesian population model is introduced which jointly models the 
population QT-RR relationship and the individual ones, therefore 
exploiting other subjects’ information to learn individual parameters. 
Such approach results in robust estimation also when a particular 
subject is poorly sampled.

Fig. 5 displays a goodness-of-fit plot for the two methods.

The superiority of the new 
method over traditional 
parametric alternatives is 
assessed in terms of Root 
Mean Square Error (RMSE) 
using pooled regression, i.e. 
fitting the model to the whole 
data pool (Fig. 1).
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Our model-free regression is apparently unbiased, unlike, for 
example, Fridericia’s method (Fig. 2).
Further improvement in fitting 
individual data is obtained by 
resorting to an individualized 
approach. The improvement 
in individual RMSE over the 
pooled approach is apparent: 
Fig.3 depicts the pooled and 
individualized regressions for 
a given study subject,
whereas Fig. 4 shows individual RMSE distributions as box plots, 
both for the individualized and the pooled approach.
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NONPARAMETRIC INDIVIDUALIZED APPROACH PARAMETRIC POPULATION APPROACH

INTRODUCTION
The QT interval is a measure of the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle. 
Drug-induced ventricular arrhythmia associated with QT prolongation is a well-recognized form of drug toxicity. It is widely 
recognized [1] that the QT interval be dependent on the heart rate and has to be adjusted to aid interpretation. Existing correction 
formulas rely on parametric models estimated from pooled population data. Herein, a more flexible model-free nonparametric 
approach and a parametric population model for individualized correction formulas are investigated.

MATERIALS
Both approaches were evaluated using QT-RR data obtained in dogs from 24h ambulatory electrocardiograms. Empirical Bayes
estimation of the nonparametric correction formula was performed. The population modeling method was evaluated in poor sampling 
scenarios. Differently from [4], where a power model is used, a linear mixed effect model in the logarithmic scale was here adopted.

As an example, the 
individual regres-
sions obtained with 
the population and 
individualized meth-
ods, together with 
the pooled regres-
sion, are shown in 
Fig. 6 for 4 different 
subjects.

Their validation data 
points are shown 
together with the 
identification ones.

Identification data
Validation data
Pooled regression
Individualized regression
Population regression

Identification data
Validation data
Pooled regression
Individualized regression
Population regression

5 10 15 20 25 30 50 60
RMSE

Population

Pooled

Individualized

As a quantitative perfor-
mance measure of the 
population, individualized 
and pooled approaches, the 
distribution of individual
validatory RMSEs is shown 
as boxplots for all the three 
methods (Fig. 7).

The robustness of the population regressions is apparent when 
compared to the individualized ones, even in such small-sample 
scenario. 
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Fig. 1

Fig. 2

Fig. 4
Fig. 3

Additionally, each subject’s data was partitioned into three portions 
of RR: one of them, assigned randomly to each subject, was used 
for estimating the model, while the other two were served as a 
validation dataset. This reflects the fact that, in practical studies, a 
particular subject may be sampled only at certain hours of the day, 
in which the variability of heart rate is small.

A parametric linear mixed 
effects model based on the 
power regression is here 
exploited. Our population 
method was tested in a 
realistic small-sample scenario 
by uniformly under-sampling 
each individual’s dataset (60 to 
100 data points per subject). 

Fig. 6

Fig. 5
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The fitted curve is flexible in that it smoothly adapts itself to data, 
with smoothness being mathematically characterized in terms of 
second derivative magnitude.
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For each i-th subject ( i = 1, …, m )
and j-th observation ( j = 1, …, ni) :
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γ is tuned automatically using 
Generalized Cross Validation method
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