A bibliographic review of non-parametric methods and their application

Emmanuelle Comets ¹* Julie Antic ^{2,3} and Rada Savic ^{1,4}

¹ INSERM U738, Paris, France; Université Paris Diderot (Paris 7), UFR de Médecine, Paris, France ² UMR 181, Ecole Nationale Vétérinaire, Toulouse, France ³ Institut de recherches internationales Servier, Courbevoie, France ⁴ Uppsala University, Uppsala, Sweden

Objective: To survey the use of nonparametric methods within the non-linear mixed effects framework through a bibliographic study

Methods

Article selection

- Database search
- PubMed : biomedical and life sciences articles
- MathsScinet : maths journals

• Keywords used in both searches: NPEM OR NPAG OR NPML OR ((non-parametric or nonparametric) and mixed and effects and model)) Full text obtained through online librairies, mail service or direct contact.

Articles divided in 3 groups:

• each group read by two readers

- cross-checking to resolve any disagreement
- papers not in English excluded from database

Data abstraction form

Relevant information extracted using a data abstraction form (DAF):

	Results	
ral results		
Journal type	Pharmacology	39
	Medicine	12
	Statistics	9
Affiliation	Academia	49
	Both (including 4 grants)	10
	Industry	1
Paper focus	Application	43
	Methodology	13
	Both	4
Data type	PK	47
	PD	2
	PK/PD	3
	other	8
Indication	infection	19
	none	12
	other	9
	cancer	8
	analgesic/anesthesia	4
	epilepsy	4
	transplantation	3
	antibiotics	1
Data used	real	50
	both	6
	simulated	3
	none	1
Sampling design	sparse	18
	rich	17
	medium	8
	mix	7
	both	4
	not applicable	6

Table 1: Study description and data

- Mostly used by academia
- Study characteristics
- many applications in infectious diseases (antibiotics)
- Study design
- very variable number of subjects: median 50, range 8-696 (interquartile range 25-100)
- number of observations per subject also very variable: median 4, range 1-24 (missing or unclear in 12 papers)

- general characteristics: address, affiliation, journal, pathology, drugs tested, population, study objectives
- study design: number of subjects, number of observations per subject
- NP methods: estimation methods, software, other methods used
- model development: models tested, number of fixed and random effects, error model, model building
- results reported
- \bullet model evaluation: uncertainty, graphs, sensitivity analysis

The DAF was built during two consensus meetings between the 3 authors, and modified after reading a first set of 3 papers

Statistical analysis

- scriptive statistics
- data management and statistical analyses using R

Models

Table 2: Models tested, covariate models and model building

• Models

- structural models: mostly simple compartment models residual error models: polynomial models of degree 0 (homoscedastic) to 3
- frequently only one model tested
- Parameters
- fixed effects: range 0-7
- * parameters of the residual error model most often fixed * few estimation methods
- random effects: median 3, range 1-10 (including covariates in NPML) Covariates present in 57 papers
- included in the model in 44 papers
- usually according to a predetermined relationship (N=33)
- in NPML, covariates considered as additional locations (N=4) - statistical criterion used: AIC or log-likelihood (N=2), entropy reduction (N=1), predictive performance (N=1)
- not reported in N=3
- in general, methods for covariate inclusion/selection lacking • Parameter estimation
- estimation for fixed effects part of the estimation algorithm in N=4 methodological paper
- software: USC*PACK (N=35), NPML (N=9), own code (N=6) • Other estimation methods used in over half of the papers
- -IT2B (N=12): mostly to provide preliminary estimates and parameter ranges in NPEM analyses
- -FO/FOCE (N=10), two-stage methods (N=10), Bayesian methods (N=5): comparison of results
- Diffusion of non-parametric estimation methods
- -28 analyses published outside the group developing the method - including 13 with acknowledgements for help

Figure 1: Flow-chart of the selection process (the searches were performed in March 2009).

Random effects reported	Mean/median and SD/CV	48
	Distribution	7
	NR	6
Uncertainty reported	no	55
	yes	8
Sensitivity analysis	yes	4
	no	55
	NR	1
GOF plots	Observations versus predictions	19
	Residuals	2
	Other	1
	None	37
External evaluation	no	52
	100	8

Table 3: Results reported in the non-parametric analyses.

- Results reporting
- random parameters usually reported as mean/median and SD: insufficient to use the results
- distribution often plotted to detect multinormality
- Uncertainty
- few methods available to obtain an estimation of the uncertainty on the nonparametric distribution
- jacknife and bootstrap procedures proposed
- Model evaluation
- individual predictions: no consensus but often MAP or EAP
- model diagnostics: gof plots using observation-based metrics such as predictions, residuals,

Discussion

Main findings:

- Type of data: continuous or survival data
- never applied to categorical, count or time to event data

• Fixed effects

- seldom estimated, usually fixed to predetermined value * residual variability often fixed to assay error
- * NONMEM VI: use preliminary parametric analysis
- some original methods:
- \ast NPML: iterative procedure but convergence not proven * EM algorithms including estimation step for fixed effects
- * Bayesian methods: integration
- No large scale evaluation of nonparametric estimation methods • Essentially no model building
- frequently only one model tested, sometimes relying on a prior parametric estimation
- no complex models tested: runtime limitations?
- evaluation of model building procedures lacking
- Evaluation of uncertainty still an issue for non-Bayesian methods recent developments in bootstrap methods
- Limited model diagnostics
- Decreased use in recent years

Conclusion:

In general, estimation methods have good potential but there is a room for improvements (model building procedures, evaluation of uncertainty, fixed effect estimation) to ensure their wider use.

