Mixed-Effects Modeling Using Stochastic Differential Equations – Application to Pharmacokinetic Modeling

Jacob Leander1,4, Joachim Almquist1,5, Christine Ahlström3, Johan Gabrielsson3, and Mats Jirstrand1

1Fraunhofer-Chalmers Centre, Göteborg, 2CVMO i Med DMKP, AstraZeneca R&D, Mölndal, 3Department of Pharmacology and Toxicology, Swedish University of Agricultural Sciences, Uppsala, 4Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, 5Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg

Background and motivation

Nonlinear mixed-effects modeling is a popular tool for studying variability within and between individuals of a population. We have extended the ordinary differential equation setting commonly used in nonlinear mixed-effects models to include stochastic differential equations. The new approach is used to account for model misspecification and uncertainty in the underlying dynamics. The framework is applied to a pharmacokinetic model of nicotinic acid.

The stochastic mixed-effects framework

The state-space model for a single individual is described by a system of stochastic differential equations depending on some input \(u_i \) and individual parameters \(\phi_i \)

\[
\begin{align*}
\dot{x}_i &= f(x_i, u_i, \phi_i)dt + \sigma_i dW_i \\
y_{ij} &= h(x_i, u_i, \phi_i) + e_{ij} \text{ with } i = 1, \ldots, N \\
\eta_i &\sim \mathcal{N}(0, \Omega)
\end{align*}
\]

The framework is applied to a pharmacokinetic model of nicotinic acid.

Parameter estimation

Parameters are estimated by maximizing the population likelihood function. It is approximated using the so called first order conditional estimation method (FOCE). The expression for the approximate population likelihood (APL) is given by

\[
APL(\theta) = \sum_{i=1}^{N} log \left[\frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(y_{ij} - h(x_i, u_i, \phi_i))^2}{2\sigma^2} \right) \right] - \frac{1}{2} \log \left(\Omega^{-1} + \frac{\partial^2}{\partial \theta^2} \right)
\]

where the Hessian matrix is approximated using first-order terms only

\[
\Delta_i = -\sum_{i=1}^{N} \frac{\partial^2}{\partial \theta^2} R_{ij}^{-1} \frac{\partial^2}{\partial \theta} \Omega^{-1} - \Omega^{-1}
\]

The individual likelihood is given by

\[
i_i = -\sum_{i=1}^{N} \frac{\partial^2}{\partial \theta^2} R_{ij}^{-1} e_{ij} + log(2\pi\sigma^2) + \frac{1}{2} (\frac{1}{\sigma^2} (y_{ij} - h(x_i, u_i, \phi_i))^2)
\]

To evaluate the APL, we first need to determine the residual vector and output covariance matrix at all measurements points for each individual. The Extended Kalman Filter (EKF) is a suitable choice to process the data [1], which is applicable also to nonlinear models. Gradients are computed using sensitivity equations.

Stochastic NiAc disposition in obese Zucker rats

We have applied the stochastic mixed-effects framework to model the pharmacokinetics (PK) of nicotinic acid in obese rats. The stochastic PK model is an extension of a previously published deterministic model [2].

We model the pharmacokinetics by a one-compartment model with constant synthesis and non-linear elimination of nicotinic acid. We are interested in identifying the 7 parameters \(V_c \), \(Synt \), \(V_m \), \(K_m \), \(s \), \(\sigma_{\nu m} \) and \(\sigma \). We assume \(V_{\text{init}} \sim \mathcal{N}(V_{\text{m}}, \sigma_{V m}^2) \).

Parameter estimates (RSE %)

\[
\begin{align*}
V_c &= 0.32 (5.5) \\
Synt &= 0.0018 (24.3) \\
V_m &= 1.35 (16.7) \\
K_m &= 13.6 (21.5) \\
\sigma_{\nu m} &= 0.13 (27.0)
\end{align*}
\]

Highlights

- Combination of SDEs and mixed-effects models
- The framework allows for three source of variation in data
- Highly efficient gradient calculation using sensitivities
- Improved individual model fits for the NiAc data

Acknowledgements

This project has in part been supported by the Swedish Foundation for Strategic Research, which is gratefully acknowledged.

References