

Markov modeling of side effect related dropout rates by introduction of previous state memory

Sven Mensing¹, Peter Nörtersheuser¹, Rajendra S Pradhan², Paul-Matthias Diderichsen¹ ¹Abbott GmbH & Co. KG, Ludwigshafen, Germany ²Abbott Labs, Abbott Park, IL, USA

Background

- A possible side effect of niacin products is flushing, which is associated with cutaneous vasodilation (manifested as redness) of the face, neck and torso, and variably accompanied by a feeling of warmth, itching, and/or tingling.
- Tolerance to niacin-induced flushing develops when niacin is given repeatedly; however, this side effect may limit patient compliance until tolerance is achieved
- ASA is known to reduce flushing severity
- Two phase II studies (N=252, 6wks and N=241, 4wks) have been used in order to predict the dose response time profile for simultaneous dosing of Niaspan and ASA
- The model was challenged as it had to simulate dropouts of a 16 week study (N=384) see figure4
- Patients used an electronic device to record their daily flushing severity on a scale form 0 to 9 (daily records were not available for 16 week study)

Methods

- state (figure 2,3).

 \wedge

NONMEM code

\$PROB Markov model for Niaspan related flushing and dropout	[}
\$INPUT	ENDIF
\$DATA	IF(FPRV.E
\$SUBROUTINE ADVAN6 TOL=6	B1 =THET.
\$MODEL	B2 =B1-T
COMP=TOL	B3 =B2-T
COMP=CTOL	B4 =B3-T
COMP=FHST	ENDIF
\$PK	; Logits
NIAF = THETA(17) ; concentration buildup rate	C1 =EXP(
KTOL = EXP(THETA(18)) ;tolerance buildup rate	C2 = EXP ()
EFMX = THETA(19) ; Maximal drug Effect (EFF)	C3 = EXP()
AMAX = THETA(20) ; maximal ASA effect	C4 = EXP(
FBLD = EXP(THETA(21)) ;flushing history buildup rate	; Probabi
HSTF = THETA(22) ; history factor for flushing memory	P1 =C1/(
M1 = THETA(23) ;Scaling factor, maximal tolerance	P2 =C2/(
M2 = THETA(24) ;Scaling factor, history influence	P3 =C3/(
AC50 = THETA(25); EC50 for ASA	P4 =C4/(
\$DES	; Probabi
DADT(1) = NIAF*KTOL*(NIA/2000-A(1)) ; pseudo concentration model	PA =1-P1
DADT(2) = KTOL*(A(1)-A(2)) ; Niaspan tolerance	PB =P1-P
DADT(3) = FBLD*FPRV*(1-A(3)) ; flushing history/memory	PC = P2-P
\$ERROR	PD =P3-P
;drug effect on flushing	PE =P4
$EFF = EFMX^* A(1)^*(1-A(2))^*(1-AMAX^*ASA/(ASA+AC50))^*(1+A(3)) + T26+E$	TA(1) ; Select
; history/memory effect on dropout	Y=0
DEFF = HSTF * A(3)	IF(DV.EQ
B1 = THETA(1)	IF(DV.EQ
B2 = B1 - THETA(2)	IF(DV.EQ
B3 = B2 - THETA(3)	IF(DV.EQ
B4 = B3 - THETA(4)	IF(DV.EQ
IF (FPRV.EO.1) THEN	
B1 = THETA(5)	\$THETA
	\$OMEGA
ENDIF	\$ESTIMATI
TF(FPRV.EO.2) THEN	METHOD=CO
	\$COV
	\$TABLE

• The model for the flushing severity was fitted using a cumulative logistic model in NONMEM. In order to do so, the response of the patients was classified in five categories: 0=no flushing, 1=mild flushing, 2=moderate flushing, 3= (very) severe flushing and 4=dropout due to flushing.

• Adjanced observations are correlated, thus a cumulative logistic model with markovian elements was investigated [1]. The introduction of markovian elements resulted in a objective function drop of 2,000. Thus the 12 additional parameters, needed for the markovian modeling, are justified. Thus the probability of being in one state depends on the previous

 Introduction of a flushing memory, which accumulates the flushing severities of previous days (DADT(3) in NONMEM code), helped to further improve the model.

 The two studies were simulated 150 times using TrialSimulator. 90% prediction limits for patients with a certain flushing were obtained (figure 1)

• The mean transition rate for each simulation was calculated and compared to the mean observed transition rate (figure 2)

Results

mean observed rate for both phase II studies)

Figure 3: Illustration of the transit model

Figure 4: Dropout estimates for two arms of the 16 weeks study, which was not included in the modeling

Conclusions

- Visual predictive checks as well as dropout predictive check support the current model
- Flushing scores can be appropriately modeled with the current model.
- Dropout rates can be modeled as well, but the model should not be considered reliable proof for a dropout superiority study
- EC50 for ASA was estimated as ~234mg, thus a potential ASA dose to mitigate niacin related flushing is in the range of 250 to 350 mg

References

[1] Zingmark, P.-H., Kagedal, M., & Karlsson, M. (2005). Modelling a spontaneously reported side effect by use of a markov mixed-effects model. Journal of Pharmacokinetics and Pharmacodynamics, 32(2), 261-281.