APPLICATION OF THE SIMCYP PBPK/PD MODEL TO SIMULATE PK AND PD OF NIFEDIPINE IN JAPANESE AND CAUCASIAN POPULATIONS

L. Gaohua,1 M. Chetty,1 M. Jamei,1 A. Rostami Hodjegan1,2

g.lu@simcyp.com

1Simcyp Limited, Sheffield, UK & 2University of Manchester, Manchester, UK.

Objective

The recent success in application of systems approach in the area of predicting pharmacokinetics (PK) has led many to believe a similar strategy for the prediction of pharmacodynamic (PD) aspects should be adopted and popularised [1]. Although the fundamentals of mechanism-based PD (MBPD) are not new, integration of these into platforms with a user-friendly interface has not taken place up until now.

The aim of this study is to assess the ability of the PD modules within the Simcyp Simulator V.11 to predict PK and PD profiles of nifedipine in Healthy Japanese and Caucasian populations. It is assumed that the PK and PD in the healthy populations are the same as those in the hypertensive patients, although no PD effect has been constantly observed in healthy volunteers.

Model structure

Via an effect compartment, Simcyp Mini-PBPK is linked to various Simcyp PD modules, both of which are characterised of user-friendliness and flexibility in model selection. Whereas the classical Hill function model, a semi-mechanistic PD model is available to describe the receptor-binding stimulus-response mechanism. The latter further includes the empirical, operational and/or intrinsic transduction models, all of which have been incorporated in Simcyp Population-based Simulator V.11.

As shown in Figure 1, the systemic concentration-time profile of nifedipine simulated by the Mini-PBPK model is used to drive the Simcyp PD modules to generate the PD response, which is the change in the systolic blood pressure in this study, by using various PD models and parameter settings.

![Figure 1. Structure of Nifedipine PBPK/PD model](Image)

(1: Hill function; 2: Empirical transduction; 3: Operational transduction)

Discussion

As shown in Figures 2 and 3, both PK and PD profiles were successfully simulated in Japanese and Caucasian populations, producing results consistent with reported clinical studies. It was observed that including an effect compartment in the PD module could improve the prediction of PD profiles. Whilst all the PD modules could describe the observed data, the operational transduction model could be considered a more mechanistic account of nifedipine pharmacological response.

Encouragingly Shimada et al. [2] have shown a nice relationship between the in vivo equilibrium dissociation constants (Kd) of various calcium channel blockers including nifedipine and their respective affinity binding constants obtained from in vitro binding studies. Similar to the IVIVE of PK, various data from in vitro binding assays could be used to predict in vivo PD response, via the mechanism-based PK/PD models implemented within the Simcyp Simulator.

Conclusions and further development

Implemented PK/PD models within the Simcyp Simulator are able to simulate both the PK and PD profiles of nifedipine in Japanese and Caucasian populations.

Further applications could be envisaged which are facilitated by the new PBPK/PD link models.

Various information obtained from in vitro binding assays will benefit the mechanism-based IVIVE in PD.

References