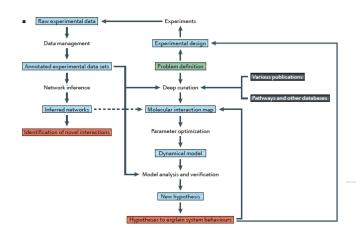


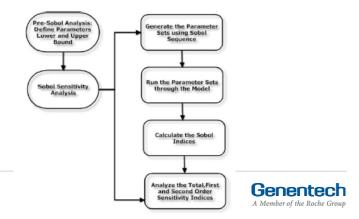

A Six-Stage Workflow for Robust Application of Systems Pharmacology

Kapil Gadkar PAGE 2016 June 2016

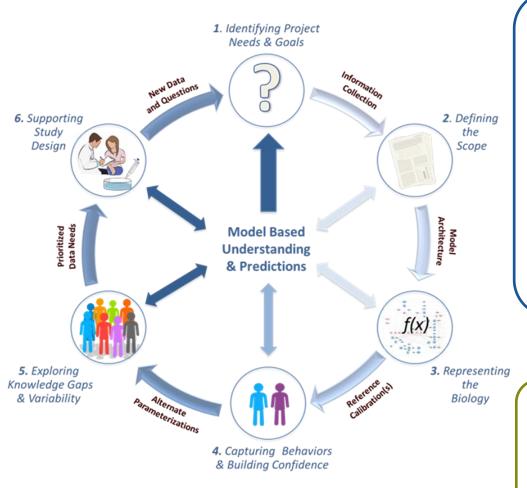
## Workflows in QSP: Bridging Conceptual Workflows and Execution?


## Descriptive workflows e.g., Visser et al CPTPSP 2015




### Qualification Workflows e.g., ROSA MQM<sup>©</sup> Friedrich et al CPTPSP 2016




## Computational workflows e.g., Ghosh et al 2011, Nature Revs- Genetics



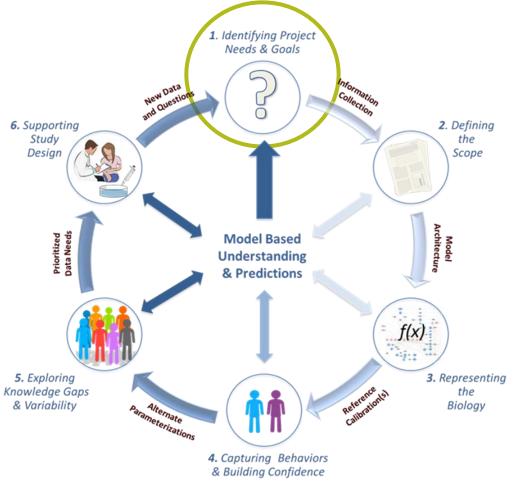
## Workflows for specific analyses e.g., Zhang et al 2015, CPTPSP



# Workflow & Technical Methodologies: Six Stages of QSP model development and Implementation



Gadkar et al, CPT-PSP 2016

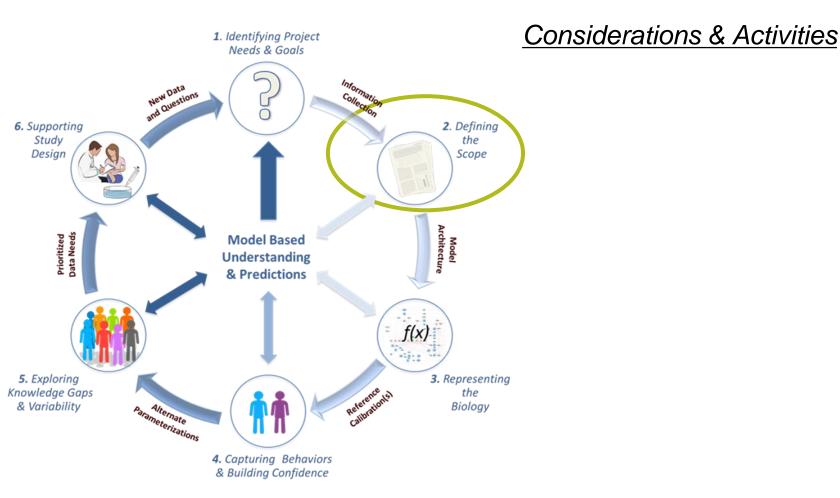

## Six stages of QSP model development & implementation

- 1. Identifying project needs & goals
- 2. Defining model and project scope
- 3. Representing the biology
- 4. Capturing behaviors
- 5. Explore knowledge gaps & variability
- 6. Supporting experimental & clinical design

- Typically an iterative process
- Needs to be adapted to specific project
- Model based "value" addition at each stage



# Stage 1: Clear understanding of the project needs & goals is primary to the ultimate success of any QSP effort




Gadkar et al, CPT-PSP 2016

- Careful evaluation of problem context and specification of the needs to be met
- Clear understanding of the decisions that will be potentially impacted
- Deadlines & time frame for decisions and milestones
- Evaluation of whether QSP is the right approach
- Identification and interaction with key stakeholders and collaborators



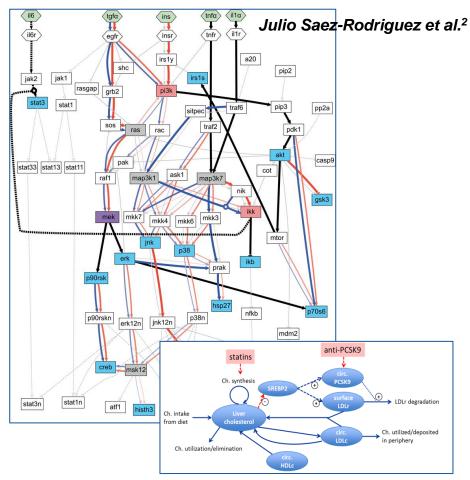




Gadkar et al, CPT-PSP 2016

- Extensive review & organization of information & data from varied sources
- Identify key knowledge gaps

|                                          | KOLs                                                       | Literature &<br>Abstracts                | Databases<br>(eg)     | "in-house"<br>data                 |
|------------------------------------------|------------------------------------------------------------|------------------------------------------|-----------------------|------------------------------------|
| General<br>Understanding                 | Disease<br>biology and<br>clinical experts                 | Review papers                            |                       |                                    |
| Mechanistic<br>understanding<br>and data | Disease<br>biology & target<br>experts                     | in vitro and in vivo studies             | Pathways<br>Molecular | In vitro and<br>in vivo<br>studies |
| Clinical<br>understanding<br>and data    | Clinical experts                                           | Clinical<br>reports and<br>study results | Trials                | Summary &<br>Patient-level<br>data |
| Modeling<br>Approaches                   | QSP, PKPD,<br>bioinformatics,<br>and statistics<br>experts | Prior art                                | Model<br>repositories | PKPD &<br>Statistical<br>models    |






- Extensive review & organization of information & data from varied sources
- Identify key knowledge gaps
- Specification of the QSP model qualification criteria<sup>1</sup>



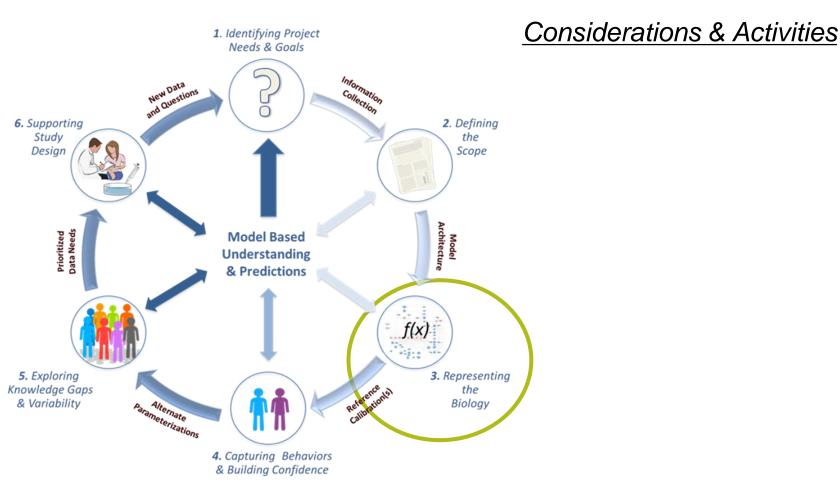
Friedrich et al; Facilitating Drug Discovery and Development with Mechanistic Physiological Models that are "Fit for Purpose": Introducing a Model Qualification Method 2012



Gadkar et al.3

- Extensive review & organization of information & data from varied sources
- Identify key knowledge gaps
- Specification of the QSP model qualification criteria<sup>1</sup>
- Visual map of the biology of scope with tools such as Cytoscape, JDesigner, others

Gadkar et al. "A Mechanistic Systems Pharmacology Model for Prediction of LDL Cholesterol Lowering by PCSK9 Antagonism in Human Dyslipidemic Populations" CPT-PSP, 2014; Nov. 3(11)




Friedrich et al; Facilitating Drug Discovery and Development with Mechanistic Physiological Models that are "Fit for Purpose": Introducing a Model Qualification Method 2012

Julio Saez-Rodriguez et al. "Comparing signaling networks between normal and transformed hepatocytes using discrete logical models" Cancer Res 2011;71:5400-5411

# Stage 3: Selection from various options for mathematical representation of the biology of interest is case specific



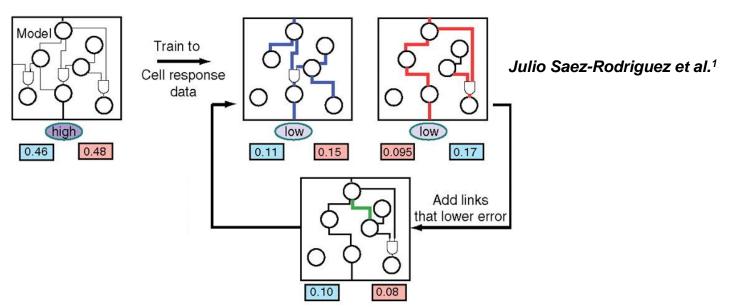


Gadkar et al, CPT-PSP 2016

# Stage 3: Selection from various options for mathematical representation of the biology of interest is case specific

## Considerations & Activities

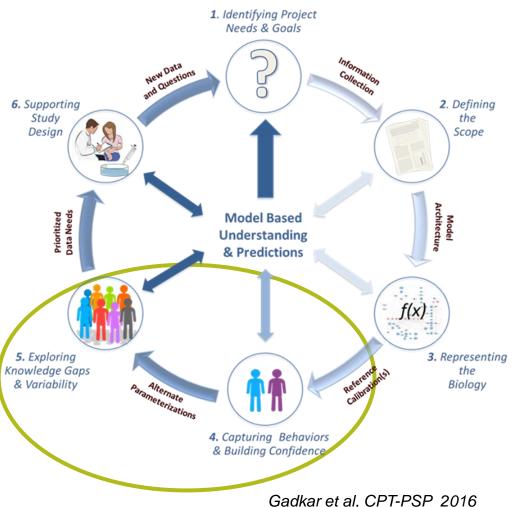
Choice of mathematical formalism
 & implementation of equations


| Method                          | Common application                           | Strengths                             | Caveats                                 |
|---------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------|
| ODEs                            | Various                                      | Continuous dynamics                   | Needs data or understanding of kinetics |
| Logic based                     | signaling                                    | Intuitive rules                       | Less kinetic richness                   |
| PDEs                            | Tumor heterogeneity                          | Continuous spatial dynamics           | Complex and computationally expensive   |
| Cellular automata & agent based | Tumor cells, immune cells, infectious agents | Emergent behaviors & spatial dynamics | Complex and computationally expensive   |
| Statistical                     | various                                      | Data-driven biology elucidation       | Less mechanistic                        |



# Stage 3: Selection from various options for mathematical representation of the biology of interest is case specific

## Considerations & Activities


- Choice of mathematical formalism
   & implementation of equations
- Alternate model structures and/or topologies



 Julio Saez-Rodriguez et al. "Comparing signaling networks between normal and transformed hepatocytes using discrete logical models" Cancer Res 2011;71:5400-5411

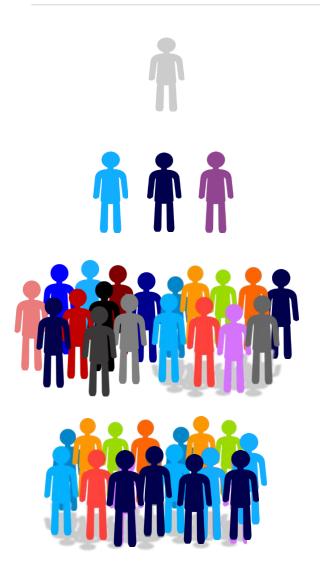


# Workflow & Technical Methodologies: Six Stages of QSP model development and Implementation



Stage 4: Capturing "Reference" behavior

Overview of tools


Stage 5: Virtual populations (Vpops) as a means to explore variability & uncertainty

 A methodology for developing Vpops

Case studies demonstrating application of the tools and workflows



## Using Virtual Subjects to Represent Uncertainty & Variability



#### Virtual subject (VS)

Single structure & parameterization of the model yielding *virtual measurements* within ranges of corresponding data

• subject = animal, human, cell, pathway, ...

### Reference virtual subject (Ref VS)

Virtual subject with virtual measurements representative of corresponding real-world data in a specified patient phenotype

e.g., severe vs. moderate vs. mild disease activity

#### **Virtual Cohort**

Collection of "candidate" virtual subjects with alternate structures or parameterizations each yielding measurements consistent with corresponding data

### **Virtual Population (VPop)**

Set of virtual subjects (from a virtual cohort) that is selected and statistically *weighted* to reproduce selected statistical features of corresponding data

e.g., mean and std. dev. of biomarker measurements



# Stage 4: "Reference" calibration indicative of high likelihood of success for QSP model

#### Considerations & Activities

• A "reference" calibration ensures topology and mathematical representation sufficient

# Stage 4: "Reference" calibration indicative of high likelihood of success for QSP model

#### Considerations & Activities

- A "reference" calibration ensures topology and mathematical representation sufficient
- Sensitivity analysis (local vs. global)<sup>1,2</sup>

|                                          | Commonly used global sensitivity analysis methods           |                                             |                                                    |                                                     |      |
|------------------------------------------|-------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------|
| Criteria for comparison                  | Weighted average<br>of local sensitivity<br>analysis (WALS) | Partial rank correlation coefficient (PRCC) | Multi-parametric<br>sensitivity analysis<br>(MPSA) | Fourier amplitude<br>sensitivity analysis<br>(FAST) | Sobo |
| Discrete inputs                          | Yes                                                         | Yes                                         | Yes                                                | Yes                                                 | Yes  |
| Model independence                       | No                                                          | No                                          | No                                                 | Yes                                                 | Yes  |
| Non-linear, input-output relationship    | Yes                                                         | Yes                                         | Yes                                                | Yes                                                 | Yes  |
| Non-monotonic input-output relationship  | Yes                                                         | No                                          | Yes                                                | Yes                                                 | Yes  |
| Robustness                               | Yes                                                         | Yes                                         | Yes                                                | Yes                                                 | Yes  |
| Reproducibility                          | Yes                                                         | Yes                                         | Yes                                                | Yes                                                 | Yes  |
| Ability to apportion the output variance | No                                                          | No                                          | No                                                 | Yes                                                 | Yes  |
| Higher order interaction of parameters   | No                                                          | No                                          | No                                                 | Yes                                                 | Yes  |
| Quantitative measure for ranking         | Yes                                                         | Yes                                         | Yes                                                | Yes                                                 | Yes  |
| Computational efficiency                 | Yes                                                         | Yes                                         | Yes                                                | No                                                  | No   |

Zhang et al.2

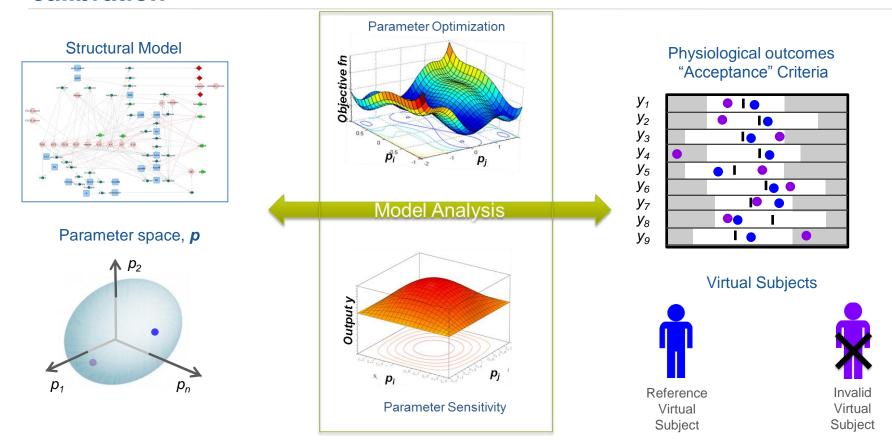
<sup>1.</sup> Marino, S., I. B. Hogue, et al. (2008). "A methodology for performing global uncertainty and sensitivity analysis in systems biology." J Theor Biol 254(1): 178-196

<sup>2.</sup> Zhang et. Al. (2015). "Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models", CPT-PSP, Feb.

# Stage 4: "Reference" calibration indicative of high likelihood of success for QSP model

- A "reference" calibration ensures topology and mathematical representation sufficient
- Sensitivity analysis (local vs. global)<sup>1,2</sup>
- Parameter estimation via optimization<sup>3,4</sup>

| Optimization<br>approach | Example<br>algorithms                                                                                                      | Strengths                                          | Caveats                                                              | Example prior applications               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|
| Local                    | Levenberg-Marquardt                                                                                                        | Simplicity, Computational efficiency               | Local minimum only;<br>Requires convex, smooth<br>objective function | Multiple                                 |
| Deterministic<br>Global  | Branch and Bound                                                                                                           | Guaranteed global min                              | Computationally expensive                                            | Metabolic systems                        |
| Stochastic<br>Global     | Simulated Annealing, Genetic Algorithms, Evolutionary Programming, Evolutionary Strategies, Particle Swarm, Scatter Search | Computational efficiency;<br>Near global minimum   | Global minimum not guaranteed                                        | Blood coagulation<br>Signal transduction |
| Hybrid                   | Combinations of the above                                                                                                  | Leverages strengths of local and global approaches | Fewer and less widely tested algorithms available                    | Lipid metabolism                         |


<sup>1.</sup> Marino, S., I. B. Hogue, et al. (2008). "A methodology for performing global uncertainty and sensitivity analysis in systems biology." J Theor Biol 254(1): 178-196

<sup>2.</sup> Zhang et. Al. (2015). "Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models", CPT-PSP, Feb.

<sup>3.</sup> Sun, J., V. Palade, et al. (2014). "Biochemical systems identification by a random drift particle swarm optimization approach." BMC Bioinformatics 15 Suppl 6: S1

<sup>4.</sup> Rodriguez-Fernandez et al. (2006). "Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems." <u>BMC Bioinformatics</u> 7: 483

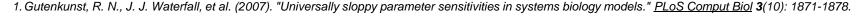
# Stage 4: Workflow and considerations for Reference Subject calibration



#### **Considerations**

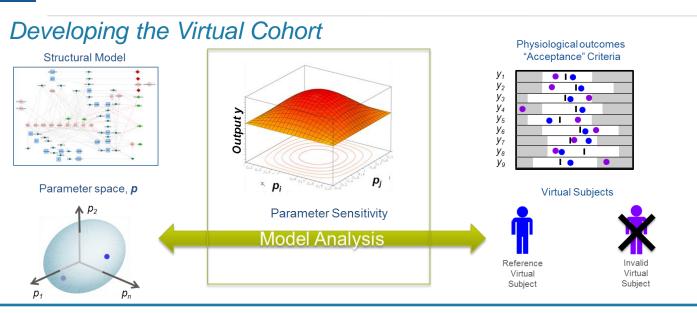
- Defining the objective function is non-trivial & critical for efficient Reference Subject calibration
- Iteration on QSP model representation is critical at this stage: (i) modifications to mathematical representation; (ii) expansion/reduction of biology included; (iii) alternate hypothesis testing
- Developing a suite of algorithms/tools specific for to QSP models is of high value




# Stage 5: Exploration of variability and knowledge gaps an extremely important aspect of QSP-based work

#### **Considerations**

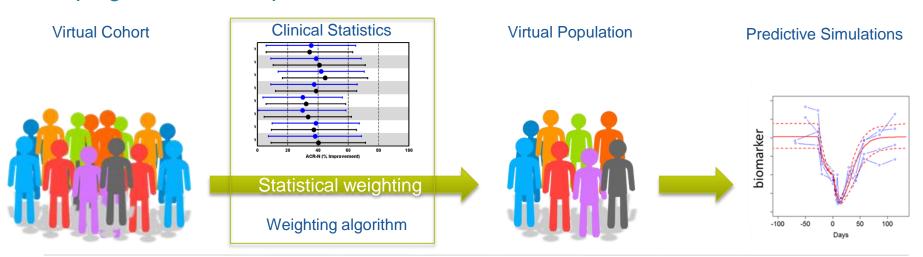
- Kinds of uncertainty & variability include:
  - Insufficient or imperfect mechanistic knowledge
  - Quantitative uncertainty in the available data
  - Known inter-subject or intra-subject (spatial or time) variability
- Knowledge gaps typically explored via alternate model structures or alternate parameterizations; each instance a Virtual Subject
- Multiple Virtual Subjects may "behave" similarly to the known data— i.e, non-unique
- Collective available data utilized to develop the Virtual Population
- Testing against "new" data establishes predictive capability
- "Typical" QSP models are "sloppy": focus on ranges of predictions rather than parameter values


#### Outcomes/learnings

Robust QSP-based findings grounded in quantitative biology






## Workflow for developing a Virtual Population



## **Workflow for developing a Virtual Population**



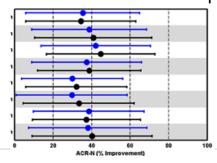
## Developing the Virtual Population



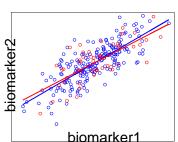
# Statistically weighed virtual population enables robust quantitative representation of a "real" clinical population

Each Virtual Subject in the Virtual Population assigned a "weight" corresponding to the probability of finding similar measurements in the clinical population

 The virtual population as a whole captures the observed statistics of the "true" clinical population of interest


The key statistics captured include:

- Mean and distribution of clinical measurements both as baseline and responses to interventions
- Observed correlations (or lack thereof) between measurements


The weights could either be binary (include/exclude) or be continuous (range from 0-1)

Calculated using constrained optimization techniques to match the desired statistics

Virtual Population matching means & distributions of clinical populations



Clinical data Virtual population Virtual Population captures correlation between biomarkers observed in clinical data



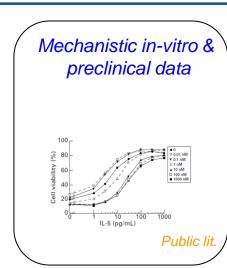
Clinical data
Virtual population

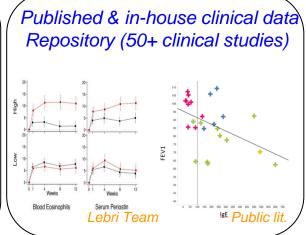


# Example: Mechanism based Asthma disease model supporting Genentech pipeline for target validation, molecule selection & biomarker evaluation

## **Stage 1: Project goals**

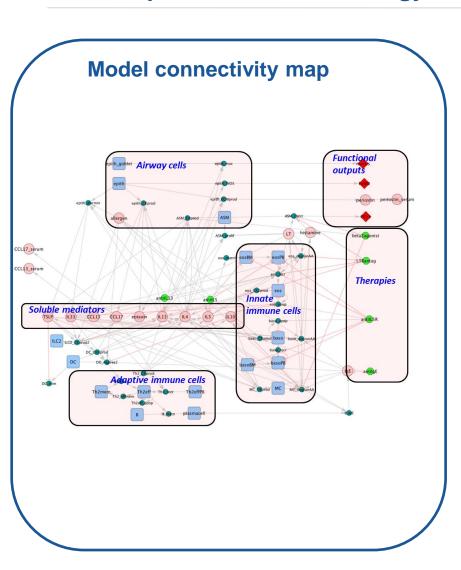
- Mechanistic underlying relating cell biology to airway physiology in terms of FEV1
- Predictions of changes in underlying biology and endpoints for untested novel therapies
- Evaluation of potential biomarkers
- Support patient population selection for clinical trials
- Evaluate impact of co-meds/background therapies on response to novel drug
- Evaluation of new targets


## Stage 2: Scoping

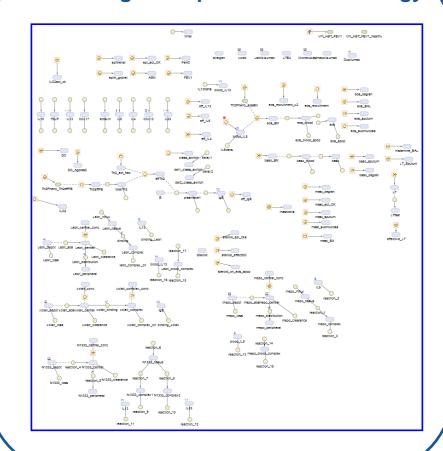

#### Key Biological mechanisms & scope

- Activation /recruitment of innate immune cells: eosinophils, basophils, dendritic cells, ILC2s, mast cells, neutrophils
- · Activation of adaptive immune cells: Th2, B, plasma, Th17
- Production & effects of soluble mediators
- Airway response: Epithelial cell mediator & mucus production, ASM contraction

#### Clinical Scope


- Clinical endpoints: FEV1, FeNO
- Patients types: healthy, asthmatics (range of disease severity), eosinophilic vs. neutrophil dominant
- Interventions: anti-IL5, anti-IL13, anti-IgE, steroids, anti-IL4Rα, others

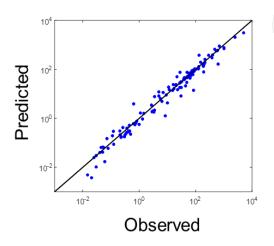




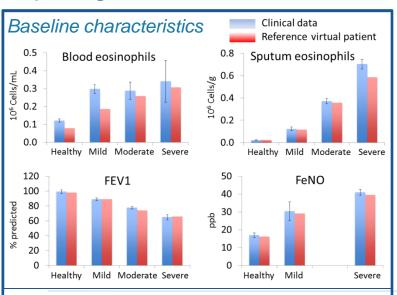



# Stage 2 & 3: Model schematic in Cytoscape translated to a an ODE based model represented in Simbiology/MATLAB

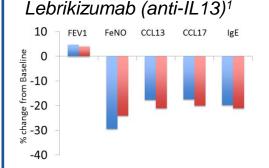



## Model diagram/equations in Simbiology

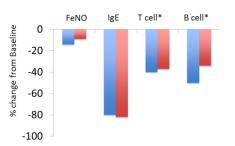



# Stage 4: Application of stochastic global optimization for Reference Subject(s) calibrations in the Asthma QSP platform

#### Implementation Considerations


- Data for different patient phenotypes (variability in mechanistic drivers, disease severity)
- Data across multiple cell types, mediators & clinical readouts for multiple therapies/interventions
  - Appropriate data normalization
  - Simultaneous simulations of all interventions for objective function evaluation
- Several mechanistic limitations of model identified in this step and model updated accordingly

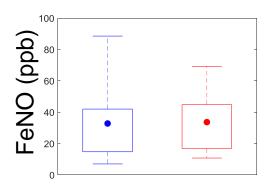


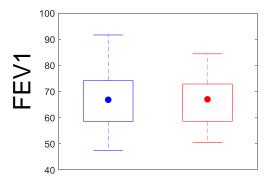

## Capturing the "reference" behavior



### Response to therapies (severe reference subject)




## Omalizumab (anti-lgE)<sup>2,3</sup>

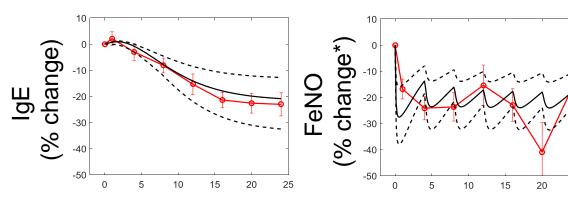



- (1) Corren J et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011 Sep 22;365(12):1088-98
- (2) Hanania NA, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011 May 3:154(9):573-82
- (3) Djukanović R, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med. 2004 Sep 15;170(6):583-93

# Stage 5: Variability at baseline and responses to intervention represented in virtual population

## Baseline characteristics






Blue: clinical data

Red: Virtual population

Solid circle is mean Box is 25-75 percentile Error bars is range

## Response to interventions



Clinical data (response to anti-IL13) Virtual population

Research application of this Asthma QSP model is presented in poster (IV-18) presented by Sid Sukumaran

25



## **Acknowledgements**



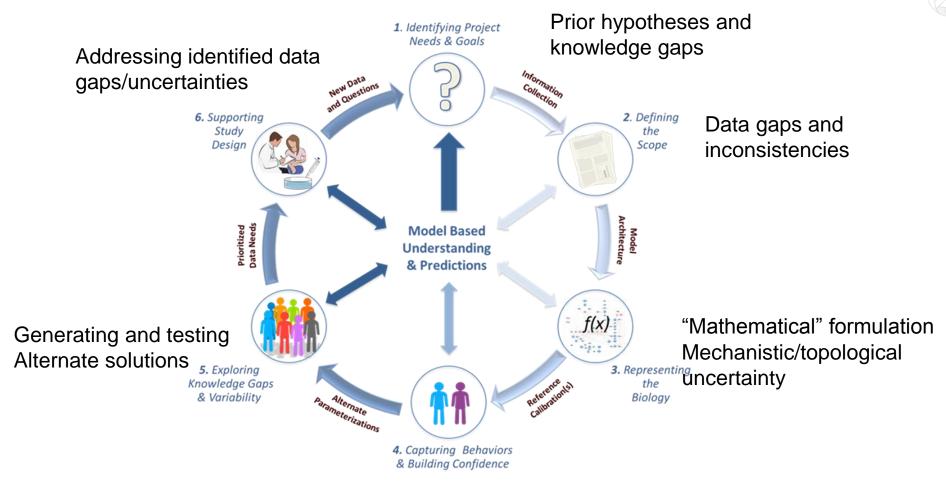
Saroja Ramanujan – QSP Group Lead

Sid Sukumaran

**Daniel Kirouac** 

Iraj Hosseini

Asthma QSP working group


#### **External Collaborators & Advisors**

Piet van der Graaf

Don Mager



# Workflow & Technical Methodologies: Six Stages of QSP model development and Implementation



Verifying structural model can capture key phenotypes/data within ranges of uncertainty and variability

Gadkar et al, CPT-PSP 2016



## **Backup slides**



## What kinds of uncertainty and variability do we commonly encounter

## Insufficient or imperfect mechanistic knowledge

- Alternate hypotheses? Conflicting data? Missing data?
- Translational relevance?

## Quantitative uncertainty

 Lack of quantitative prior information on modeled entities and/or process parameters (e.g. what is the level or rate of X)

## Known inter-subject or intra-subject (spatial or time) Variability

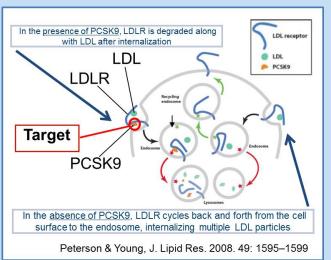
Can be either qualitative or quantitative



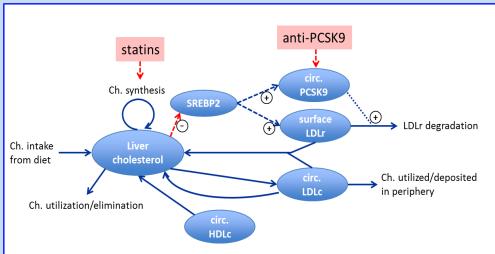
## **Backup slides**

## Common distinguishing features of QSP approaches

- A coherent mathematical representation of key biological connections in the system of interest, consistent with the current state of knowledge
- A general prioritization of necessary biological detail over parsimony potentially including detail at the genetic, protein, cellular, tissue, organ, and whole-body scales
- Consideration of complex systems dynamics resulting from biological feedbacks, cross-talk, and redundancies
- Integration of diverse data, biological knowledge, and hypotheses
- A representation of the pharmacology of relevant therapeutic interventions
- The ability to perform quantitative hypothesis exploration and testing via biology-based simulation in virtual "subjects" (e.g., humans, animals, cells)


Connectook

# Frequently Asked Questions of QSP models in the context of uncertainty & variability


- How can you build a model of biology we don't quite understand?
   What about competing hypotheses? Conflicting data?
- With enough parameters you can fit an elephant. The model is underspecified and the parameters are not identifiable.
- How do we evaluate and interpret this work? To what extent should we trust the predictions?

# Robust scoping effort determines the biology to be included in the QSP model & collection of diverse data sets for development

## Model schematic developed from current knowledge & input from biology experts







#### **Biological Mechanisms & Behaviors**

- · Untreated hepatic cholesterol balance
- LDLr synthesis/degradation including regulation by PCSK9
- LDL synthesis and uptake via LDLr
- SREBP2 regulation of PCSK9 & LDLr expression
- Anti-PCSK9 binding of PCSK9
- Statin inhibition of cholesterol synthesis

#### Available data

#### Preclinical data

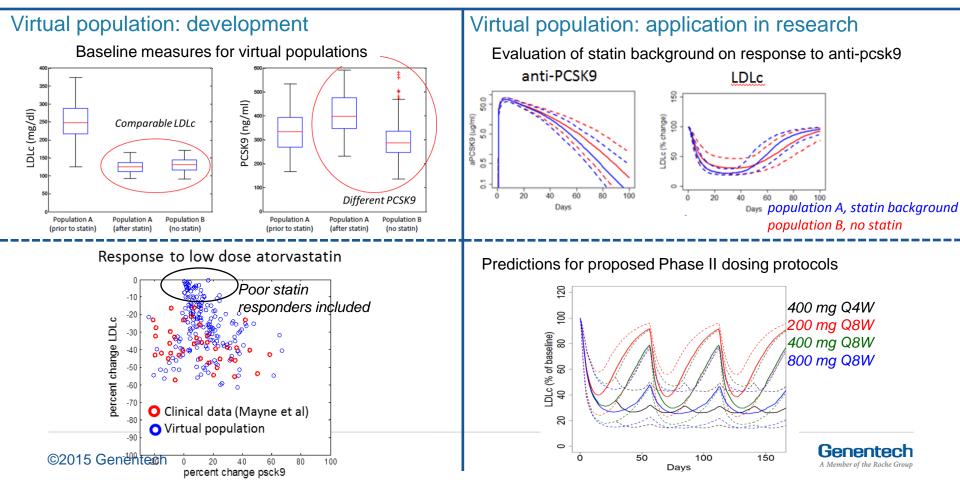
- · Impact of pcsk9 on LDLr in vitro
- Regulation of pcsk9 and LDLr via SREBP2 in vitro
- LDLr specific vs non-specific LDL clearance in animal models

#### Patient populations

- pcsk9 & LDLc levels in dyslipidemia, familial hypercholesterolemia
- Kinetics of hepatocyte cholesterol regulation, apoB-100 particle dynamics, etc

#### Statin clinical data (Jupiter & TNT studies)

- · Change in LDLc with statins
- Changes in pcsk9 levels on statins and correlations with other biomarkers


## Anti-pcsk9 clinical data (Genentech Phase I study)

 Phase I clinical data for anti-pcsk9, total pcsk9, LDLc profiles for monotherapy and combo with statins

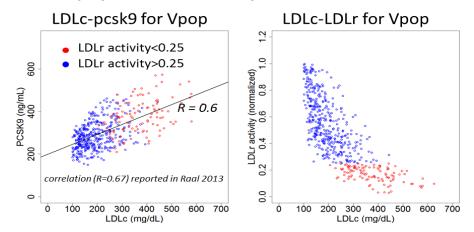


# Virtual Populations to address impact of background statin therapy to response to anit-PCSK9 and support trial design

- Inclusion criteria for Phase II available for Virtual Population development
  - Expected LDLc for clinical population: Mean  $\pm$ SD = 125  $\pm$  25 mg/dL
  - Patients with/without statin background expected (two Vpops developed)
- Variability in response (both LDLc & PCSK9) to statin treatment for clinical population available

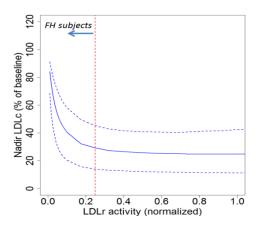


# Virtual Populations developed to evaluate response to anti-PCSK9 for a specific patient sub-phenotype


The most common genetic defects in Familial hypercholesterolemia (FH) patients

are *LDLr* mutations

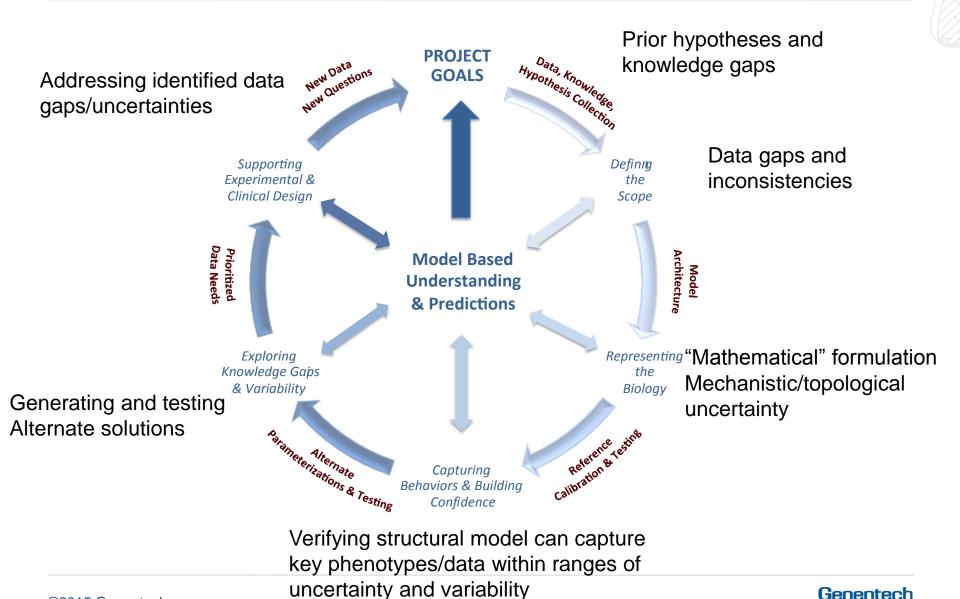
- Function LDLr activity in heterozygous FH is 10-25%
- Function LDLr activity in homozygous FH is <5%</li>
- FH patients have high LDLc levels
- Correlations of baseline LDLc & PCSK9 levels reported in literature (Raal et al. 2003)


# ch. intake cholesterol circ. HDLc Altered in FH patients

#### Virtual population: development



Range of clinical measures (LDLc, PCSK9) at baseline consistent with expected enrollment in potential clinical study


#### Virtual population: application in research

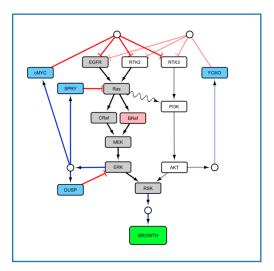


 QSP model predicts that response to anti-pcsk9 is compromised for FH subjects with LDLr activity less than 10% of normal



## **Workflow & Technical Methodologies:** Six Stages of QSP model development and Implementation



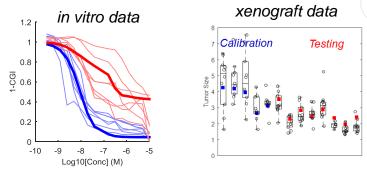

## **Quantitative Systems Pharmacology: Terminology for this talk**

| Term                                                       | Definition                                                                                   | Attributes                                                                                                                   |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| QSP Model<br>(for tools described in this<br>presentation) | ODE based: $\dot{X} = f(X, p, t)$<br>Logic/algebraic based: $X = f(X, p, t)$                 | X: states/species p: parameters                                                                                              |
| Physiological Outcome                                      | Any quantity calculated from model for which experimental data available                     |                                                                                                                              |
| Virtual Subject                                            | A single parameterization of the model                                                       | All physiological outcomes are within available data                                                                         |
| Reference Subject                                          | A Virtual Subject that exhibits simulated behaviors representative of a specific phenotype   |                                                                                                                              |
| Virtual Cohort                                             | A collection of virtual subjects                                                             |                                                                                                                              |
| Virtual Population                                         | A collection of virtual subjects that is selected to match a "real" population               | A subset of the Virtual Cohort that is selected or weighted to match statistical properties of experimental or clinical data |
| Statistical (prevalence) Weighting                         | Assignment of weights to different Virtual Subjects in a Virtual Population                  | The resulting weighted simulation results capture statistical features of experimental data                                  |
| Variability                                                | Subject to subject differences in mechanistic biology and/or phenotypic behaviors            |                                                                                                                              |
| Uncertainty or Knowledge Gap                               | Areas of qualitative or quantitative uncertainty in mechanistic biology, phenotypic profiles |                                                                                                                              |

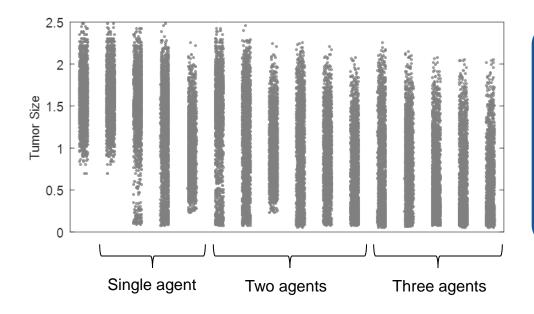
# Case studies demonstrate implementation of proposed QSP workflow for Virtual Population

#### MAPK signaling model

- 15 states; 35 parameters
- Model developed primarily using in-vitro & preclinical data sets:
  - Protein signaling dynamics (e.g. pERK, pMEK) in response to inhibitor treatment in vitro
  - In vitro cell growth responses to inhibitors across panels of genetically diverse cell lines
  - In vivo (xenograft) responses to drug combos
- Limited clinical data available: Patient-level tumor growth response data from Phase1 clinical trials




Kirouac, ACoP 2015




# Comparison across multiple single and combination therapies for MAPK pathway inhibitors

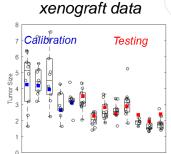
- Model developed using in-vitro & preclinical data
- Model translation to predict tumor size for a clinical population
  - Uncertainty in translation included
  - Greater intersubject tumor heterogeneity
  - Pharmacokinetic variability included



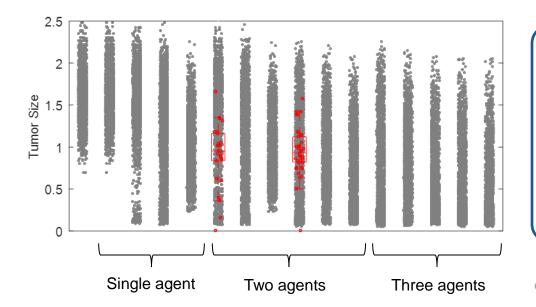
Representative figures for model calibration & testing




 Limited confidence in predictive capability with Virtual Cohort


Virtual Subjects




# Comparison across multiple single and combination therapies for MAPK pathway inhibitors

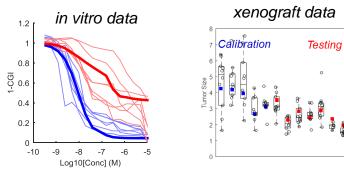
- Model developed using in-vitro & preclinical data
- Model translation to predict tumor size for a clinical population
  - · Uncertainty in translation included
  - Greater intersubject tumor heterogeneity
  - Pharmacokinetic variability included



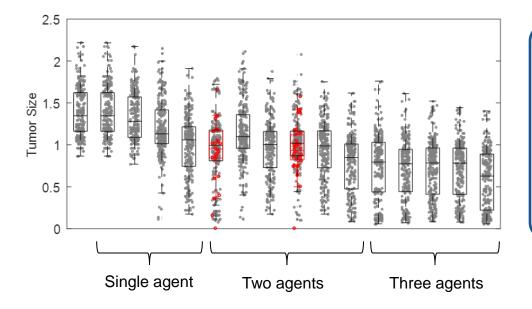


Representative figures for model calibration & testing




- Limited confidence in predictive capability with Virtual Cohort
- Clinical data available for two protocols utilized for weighting to generate the Virtual Population

- Virtual Subjects
- Clinical data




# Comparison across multiple single and combination therapies for MAPK pathway inhibitors

- Model developed using in-vitro & preclinical data
- Model translation to predict tumor size for a clinical population
  - Uncertainty in translation included
  - Greater intersubject tumor heterogeneity
  - Pharmacokinetic variability included



Representative figures for model calibration & testing



- Limited confidence in predictive capability with Virtual Cohort
- Clinical data available for two protocols utilized for weighting to generate the Virtual Population
- Increase in quantitative confidence in predictions with Virtual Population
- Virtual Subjects
- Clinical data

